Skip to main content
Log in

Diversity Arrays Technology effectively reveals DNA polymorphism in a large and complex genome of sugarcane

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Diversity Arrays Technology (DArT) provides whole genome profiling for hundreds to thousands of polymorphic markers in a single assay using a high-throughput microarray platform. The presented work aimed to establish DArT genotyping for the genetically challenging genome of sugarcane. Due to the genome complexity of this sugar-producing crop of high economic importance, an application of DArT genotyping to this species required extensive testing and optimization. As the method of genome complexity reduction determines the efficiency of polymorphism identification in DArT, various approaches and several methods were tested, in order to establish the most optimal. The sugarcane DArT markers generated with these established methods identified high genetic differentiation of sugarcane ancestral species from modern cultivars, in agreement with the data available for other types of molecular markers for this crop. The majority of sugarcane DArT markers segregated in a Mendelian fashion and were readily incorporated into the framework genetic map. As the DArT markers are sequence-ready genomic clones, we sequenced 384 clones and found that one-third of sequenced markers came from the transcribed portion of the sugarcane genome. The presented results further validate the potential of DArT technology in providing cost-effective genetic profiles for plants, irrespective of their genome complexity, for effective applications in molecular-assisted breeding, diversity analysis or genetic identity testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Jackson PA, Piperidis G, McIntyre CL (2006) AFLP analysis of genetic diversity within S. officinarum and comparison with sugarcane cultivars. Aust J Agric Res 57:1167–1184

    Article  CAS  Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2007) Construction of a genetic map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome 50:742–756

    Article  PubMed  CAS  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity Arrays Technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Asnaghi C, Roques D, Ruffel S, Kave C, Hoarau JY, Telismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764

    Article  PubMed  CAS  Google Scholar 

  • Besse P, Taylor G, Carroll B, Berding N, Burner D, McIntyre CL (1998) Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104:143–153

    Article  PubMed  CAS  Google Scholar 

  • Biomolecular Resource Facility in JCSMR, ANU website [http://brf.jcs.anu.edu.au/services/DNAsequencing/]

  • Bonin A, Paris M, Despres L, Tetreau G, David J-P, Kilian A (2008) A MITE-based genotyping method to reveal hundreds of DNA polymorphisms in an animal genome after a few generations of artificial selection. BMC Genomics 9:459

    Article  PubMed  Google Scholar 

  • Botha F (2006) Potential of sugarcane as biomass producer and biofactory [abstract]. Tropical Crop Biotechnology Conference Bulletin 8

  • Cai Q, Aitken K, Deng HH, Chen XW, Cheng F, Jackson PA, Fan YH, McIntyre CL (2005) Verification of intergeneric hybrids (F1) from Saccharum officinarum × Erianthus arundinaceus, and BC1 from F1 × sugarcane (Saccharum spp.) clones using molecular markers. Plant Breed 124:322–328

    Article  CAS  Google Scholar 

  • Casa A, Bronwer C, Nagel A, Wagel L, Zhang Q, Kresovich S, Wessler SR (2000) The MITE family Heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci USA 97:10083–10089

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro GM, Taylor GO, Henry RJ (1999) Characterization of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid species. Plant Sci 155:161–168

    Article  Google Scholar 

  • D’Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • D’Hont A, Souza GM, Menossi M, Vincentz M, Van-Sluys AM, Glaszmann JC, Ulian E (2008) Sugarcane: a major source of sweetness, alcohol and bio-energy. In: Moore PH, Ming R (eds) Tropical crop plant genomics. Springer, New York

    Google Scholar 

  • Da Silva JAG, Sorrells ME, Burnquist WL, Tanksley SD (1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36:782–791

    Article  CAS  Google Scholar 

  • Diatchenko L, Lau YF, Cambpbell AP, Chenchik A, Moqadam F, Huang S, Lukyanow S, Lukyanow K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:1–15

    Google Scholar 

  • Felsenstein J (2002) PHYLIP (Phylogeny Inference Package) version 3.6a3. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Feng Y (2003) Plant MITEs: useful tools for plant genetics and genomics. Genomics Proteomics Bioinformatics 1:90–99

    PubMed  CAS  Google Scholar 

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52

    Article  PubMed  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations website [http://faostat.fao.org/default.aspx]

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314

    Article  PubMed  CAS  Google Scholar 

  • Glaszmann JC, Lu YC, Lanaud C (1990) Variation of nuclear ribosomal DNA in sugarcane. J Genet Breed 44:191–198

    Google Scholar 

  • Goldemberg J (2007) Ethanol for sustainable energy future. Science 315:808–810

    Article  PubMed  CAS  Google Scholar 

  • Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploidy interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Grivet L, Daniels C, Glaszmann JC, D’Hont A (2004) A review of recent molecular genetics evidence for sugarcane evolution and domestication. Ethnobot Res Appl 2:9–17

    Google Scholar 

  • Gruenbaum Y, Nareh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  PubMed  CAS  Google Scholar 

  • Guimarães CT, Sills GR, Sobral BW (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266

    Article  PubMed  Google Scholar 

  • Hoarau JY, Offman B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.) I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • James KE, Schneider H, Ansell SW, Evers M, Robba L, Uszynski G, Pedersen N, Newton AE, Russell SJ, Vogel JC, Kilian A (2008) Diversity arrays technology (DArT) for pan-genomic evolutionary studies of non-model organisms. PLoS One 3:e1682

    Article  PubMed  Google Scholar 

  • Jannoo N, Grivet L, Seguin M, Dookun A, D’Hont A, Glaszmann JC (1999a) Linkage disequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060

    Article  CAS  Google Scholar 

  • Jannoo N, Grivet L, Seguin M, Paulet F, Domaingue R, Rao PS, Dookun A, D’Hont A, Glaszmann JC (1999b) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Article  CAS  Google Scholar 

  • Jannoo N, Grivet L, David J, D’Hont A, Glaszmann JC (2004) Differential chromosome pairing affinities at meiosis in polyploidy sugarcane revealed by molecular markers. Heredity 93:460–467

    Article  PubMed  CAS  Google Scholar 

  • Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Proceedings of the international congress in the wake of the double helix: from the green revolution to the gene revolution, 27–31 May 2003, Bologna, Italy, Avenue Media, pp 443–461

  • Lezar S, Myburg AA, Berger DK, Wingfield MJ, Wingfield BD (2004) Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theor Appl Genet 109:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Lima ML, Garcia AA, Oliveira KM, Matsuoka S, Arizono H, De Souza CL Jr, De Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38

    Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  PubMed  Google Scholar 

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, DeAmbrogio E, Kilian A (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648

    Article  CAS  Google Scholar 

  • Mudge J, Andersen WR, Kehrer R, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1366

    Article  CAS  Google Scholar 

  • Official website of Diversity Arrays Technology P/L [http://www.diversityarrays.com/publications]

  • Park KC, Lee JK, Kim NH, Shin YB, Lee JH, Kim NS (2003) Genetic variation in Oryza species detected by MITE-AFLP. Genes Genet Syst 78:235–243

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software [http://darwin.cirad.fr/france]

  • Rabinowicz PD, Palmer LE, May BP, Hemann MT, Lowe SW (2003) Genes and transposons are differentially methylated in plants but not in mammals. Genome Res 13:2658–2664

    Article  PubMed  CAS  Google Scholar 

  • Raboin LM, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau JY, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk color and a new rust resistance gene. Theor Appl Genet 112:1382–1391

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbour Laboratory Press

  • Sessittsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Tankouo Sandjong B, Bodrossy L (2006) Diagnostic microbial microarrays in soil ecology. New Phytol 171:719–736

    Article  Google Scholar 

  • Silva JA, Bressiani JA (2005) Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Bio 28:294–298

    Article  Google Scholar 

  • Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HR, Bjørnstad Å, Howarth CJ, Jannink J-C, Anderson JM, Rossnagel BG, Stuthman DD, Sorrells ME, Jackson EW, Tuvesson S, Kolb FL, Olsson O, Federizzi LC, Carson ML, Ohm HW, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceplitis A, Langdon T (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39

    Article  PubMed  Google Scholar 

  • Tomkins JP, Yu Y, Miller-Smith H, Fuisch DA, Woo SS, Wing RA (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  PubMed  CAS  Google Scholar 

  • Vettore AL, Da Silva FR, Kemper EL, Souza GM, Da Silva A, Ferro MIT, Henrique-Silva F, Giglioti ÉA, Lemos M, Coutinho LL, Nobrega MP, Carrer H, França SC, Bacci M Jr, Goldman MH, Gomes SL, Nunes LR, Camargo LE, Siqueira WJ, Van Sluys MA, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon M, Ferro JA, Silveira HC, Marini DC, Lemos EG, Monteiro-Vitorello CB, Tambor JH, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima M, de Rosa VE Jr, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SM, Nobrega FG, Menck CF, Braga MD, Telles GP, Cara FA, Pedrosa G, Meidanis J, Arruda P (2006) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Raman H, Wang J, Zhou M, Huttner E, Kilian A (2007) A DArT platform for quantitative bulked segregant analysis. BMC Genomics 8:196

    Article  PubMed  Google Scholar 

  • Wittenberg AHJ, Van Der Lee T, Cayla C, Kilian A, Visser RGF, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Gen 274:30–39

    CAS  Google Scholar 

  • Xia L, Peng K, Yang S, Wenzl P, De Vicente C, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by Diversity Arrays Technology (DArT). Theor Appl Genet 113:585–595

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank colleagues from Diversity Arrays Technology for technical assistance and continuous help, Damian Jaccoud for performing the redundancy analysis and Aurélie Bonin for critical reading and valuable comments on the manuscript. This project was supported by a grant from the Cooperative Research Center for Sugar Industry Innovation through Biotechnology, Australia and by International Consortium for Sugarcane Biotechnology (ICSB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kilian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2010_9460_MOESM1_ESM.pdf

Online Resource 1 Title: Summary of the methods used to reduce complexity of sugarcane genome. Description: The table shows primary and secondary Restriction Enzymes deployed in testing of the genome complexity reduction methods, sequences of ligated adaptors, and sequences of primers and amplification regimes used to amplify genomic representations. (PDF 111 kb)

11032_2010_9460_MOESM2_ESM.pdf

Online Resource 2 Title: Components of the array used to assess the segregation patterns of DArT markers in sugarcane. Description: The table summarizes the details of the library/array used for genotyping experiment of the IJ76-514 × Q165 mapping population: methods of genome complexity reduction, the sugarcane genotypes used to generate library/array and number of clones per each method. (PDF 103 kb)

11032_2010_9460_MOESM3_ESM.pdf

Online Resource 3 Title: Correlation values between the technical replicates of the PstI/TaqI genomic representations of two sugarcane genotypes. Description: The table displays the correlation matrix for the relative signal intensity calculated for 12 arrays per genotype for two sugarcane accessions (Q813 and F172). Each correlation value was calculated using the relative signal intensity (log2 of ratio derived from fluorescence signal of genomic representation divided by reference signal) of all clones on the array (1,536 clones printed in triplicate). The method of preparation of genomic representations used in this analysis is described in details in Methods and briefly in the legend of the table. Supplementary material 3 (PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller-Uszynska, K., Uszynski, G., Huttner, E. et al. Diversity Arrays Technology effectively reveals DNA polymorphism in a large and complex genome of sugarcane. Mol Breeding 28, 37–55 (2011). https://doi.org/10.1007/s11032-010-9460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9460-y

Keywords

Navigation