Skip to main content
Log in

Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The tomato Pto gene encodes a serine/threonine kinase (STK) whose molecular characterization has provided valuable insights into the disease resistance mechanism of tomato and it is considered as a promising candidate for engineering broad-spectrum pathogen resistance in this crop. In this study, a pair of degenerate primers based on conserved subdomains of plant STKs similar to the tomato Pto protein was used to amplify similar sequences in banana. A fragment of ∼550 bp was amplified, cloned and sequenced. The sequence analysis of several clones revealed 13 distinct sequences highly similar to STKs. Based on their significant similarity with the tomato Pto protein (BLASTX E value <3e-53), seven of them were classified as Pto resistance gene candidates (Pto-RGCs). Multiple sequence alignment of the banana Pto-RGC products revealed that these sequences contain several conserved subdomains present in most STKs and also several conserved residues that are crucial for Pto function. Moreover, the phylogenetic analysis showed that the banana Pto-RGCs were clustered with Pto suggesting a common evolutionary origin with this R gene. The Pto-RGCs isolated in this study represent a valuable sequence resource that could assist in the development of disease resistance in banana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Becker D, Dugdale B, Smith M, Harding R, Dale J (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep 19:229–234

    Article  CAS  Google Scholar 

  • Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–933

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact 11:968–978

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner E (2004) WebLogo: a sequence Logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411: 826–833

    Article  PubMed  CAS  Google Scholar 

  • Di Gaspero G, Cipriani G (2003) Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Mol Genet Genomics 269:612–623

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J, Dolezelova M, Novak FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357

    Google Scholar 

  • Douchkov D, Nowara D, Zierold U, Schweizer (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant Microbe Interact 18:755–761

    Article  PubMed  CAS  Google Scholar 

  • Frederick RD, Thilmony RL, Sessa G, Martin GB (1998) Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase. Mol Cell 2:241–245

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist D.G. (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu Rev Phytopathol 36:393–414

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack K, Parker J (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotech 14:177–193

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Method Enzymol 200:38–62

    Article  CAS  Google Scholar 

  • Hardie DG (1999) Plant protein serine/threonine kinases: classifications and functions. Annu Rev Plant Physiol Plant Mol Biol 50:97–131

    Article  PubMed  CAS  Google Scholar 

  • Hartwell J, Gill A, Nimmo GA, Wilkins MB, Jenkins GI, Nimmo HG (1999) Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J 20:333–342

    PubMed  CAS  Google Scholar 

  • He ZH, He D, Kohorn BD (1998) Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant J 14:55–63

    Article  PubMed  CAS  Google Scholar 

  • Jain SM (2004) Cellular biology and biotechnology including mutation techniques for creation of new useful banana genotypes. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations. Science Publishers, USA

    Google Scholar 

  • Jones DR (2000) History of banana breeding. In: Jones DR (eds) Diseases of Banana, Abacá and Enset. CABI, UK, pp 425–434

    Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breeding 14:239–252

    Article  CAS  Google Scholar 

  • Kim YJ, Lin NC, Martin GB (2002) Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589–598

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • López C, Acosta I, Jara C, Pedraza F, Gaitan-Solis E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistance to different pathogens in common bean. Phytopathology 93:88–95

    Article  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1435

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the function of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Zamora MG, Castagnaro AP, Diaz-Ricci JC (2004) Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Mol Genet Genomics 272:480–487

    Article  PubMed  CAS  Google Scholar 

  • May G, Afza R, Mason H, Wiecko A, Novak F, Arntzen C (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technology 13:486–492

    Article  CAS  Google Scholar 

  • McDowell JM, Dhandaydham M, Long TA, Aarts MGM, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861–1874

    Article  PubMed  CAS  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotech 21:178–183

    Article  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    PubMed  CAS  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Noir S, Combes MC, Anthony F, Lashermes P (2001) Origin, diversity and evolution of NBS-type disease resistance gene homologues in coffee trees (Coffea L.). Mol Genet Genomics 265:654–662

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Vázquez E, Kaemmer D, Zhang HB, Muth J, Rodríguez-Mendiola M, Arias-Castro C, James A (2005) Construction and characterization of a plant transformation-competent BIBAC library of the black Sigatoka resistant banana Musa acuminata cv. Tuu Gia (AA). Theor Appl Genet 110:706–713

    Article  PubMed  CAS  Google Scholar 

  • Pedley KF, Martin GB (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytopathol 41:215–243

    Article  PubMed  CAS  Google Scholar 

  • Ploetz RC (2005) Panama disease, an old nemesis rears its ugly head: part 1, the beginnings of the banana export trades. Plant Health Progress. doi:10.1094/PHP-2005-1221-01-RV

  • Rathjen JP, Chang JH, Staskawicz BJ, Michelmore RW (1999) Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto. EMBO J 18:3232–3240

    Article  PubMed  CAS  Google Scholar 

  • Riely BK, Martin GB (2001) Ancient origin of pathogen recognition specificity conferred by the tomato disease resistance gene Pto. Proc Natl Acad Sci USA 98:2059–2064

    Article  PubMed  CAS  Google Scholar 

  • Sagi L, Panis B, Remy S, Schoofs H, De Smet K, Swennen R, Cammue P (1995) Genetic transformation of banana and plantain (Musa spp) via particle bombardment. Bio/Techniques 13:481–485

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sessa G, D’Ascenzo M, Martin GB (2000) Thr38 and Ser198 are Pto autophosphorylation sites required for the AvrPto-Pto-mediated hypersensitive response. EMBO J 19:2257–2269

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Xie M, Kim YJ, Zhou J, Klessig DF, Martin GB (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11:15–29

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Vallad G, Rivkin M, Vallejos C, McClean P (2001) Cloning and homology modelling of a Pto-like protein kinase family of common bean (Phaseolus vulgaris L.). Theor Appl Genet 103:1046–1058

    Article  CAS  Google Scholar 

  • Vleeshouwers V.G.A.A, Martens A, van Dooijeweert W, Colon LT, Govers F, Kamoun S (2001) Ancient diversification of the Pto kinase family preceded speciation in Solanum. Mol Plant Microbe Interact 14:996–1005

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotech 16:1365–1369

    Article  CAS  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nature Rev 4:29–38

    Article  CAS  Google Scholar 

  • Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Ramonell K, Somerville S, Stacey G (2002) Characterization of early, chitin-induced gene expression in Arabidopsis. Mol Plant Microbe Interact 15:963–970

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102:15383–15388

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Wang T, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Virginia Aurora Herrera Valencia and Dr. Ignacio Islas Flores for critical reading and helpful comments on the manuscript. We also thank the handling editor and two reviewers for their constructive suggestions. This work was supported financially by the Centro de Investigación Científica de Yucatán (grant no. B06) and the Consejo Nacional de Ciencia y Tecnología (grant no. 24579) from México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santy Peraza-Echeverria.

Additional information

Communicated by A. Hirsch.

Nucleotide sequence data are in the GenBank database as accession nos. EF492518, EF492519, EF492520, EF492521, EF492522, EF492523, EF492524, EF492525, EF492526, EF492527, EF492528, EF492529, and EF492530 for Tg-4, Tg-6, Tg-9, Tg-10, Tg-12, Tg-13, Tg-67, Tg-1, Tg-2, Tg-20, Tg-34, Tg-36, and Tg-55, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peraza-Echeverria, S., James-Kay, A., Canto-Canché, B. et al. Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana. Mol Genet Genomics 278, 443–453 (2007). https://doi.org/10.1007/s00438-007-0262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0262-9

Keywords

Navigation