Skip to main content
Log in

Detection of QTLs Linked to Leaf and Smoke Properties in Nicotiana tabacum Based on a Study of 114 Recombinant Inbred Lines

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTLs) were investigated in a recombinant inbred line (RIL) population descended from a cross between two flue-cured Nicotiana tabacum L. inbred lines with unrelated breeding origins. A total of 59 traits, related to diverse agronomic, leaf quality, chemical composition and smoke properties were assessed. Chemical traits and smoke mutagenicity were estimated by near infrared reflectance spectroscopy (NIRS) analyses of leaf lamina powders. Physical properties of cigarettes made from each RIL, and the total particulate matter (tar and nicotine yields), benzo[a]pyrene and CO contents of the main smoke stream generated by the cigarettes in mechanical smoking tests under a standard ISO regime were also analyzed. The RILs were screened for 184 amplified fragment length polymorphism (AFLP), inter simple sequence repeat (ISSR), sequence specific amplified polymorphism (SSAP), sequence characterized amplified region (SCAR) and biological markers. A partial genetic map including 18 linkage groups was constructed based on 138 of the markers. Substantial segregation distortion (47%) was observed in linkage groups throughout the genome. Seventy-five QTLs associated with 8–41.5% of the variation in the examined traits were identified on 12 linkage groups by simple and composite interval mapping. Nineteen QTLs had opposite effects to those expected from the ranking of parental means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Chaarani GR, Gentzbittel L, Huang XQ, Sarrafi A (2004) Genotypic variation and identification of QTLs for agronomic traits, using AFLP and SSR markers in RILs of sunflower (Helianthus annuus L.). Theor Appl Genet 09:1353–1360

    Article  Google Scholar 

  • Association Nationale Interprofessionnelle Technique du Tabac (ANITTA) Virginie, du semis à la livraison. Collection «Les cahiers de l’ANITTA» No 4-96-2

  • Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826

    Article  CAS  Google Scholar 

  • Bai D, Reeleder R, Brandle JE (1995) Identification of two RAPD markers tightly linked with the N. debneyi gene for resistance to black root rot of tobacco. Theor Appl Genet 91:1184–1189

    Article  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1994) Zmap – a QTL cartographer. In: Smith C, Gavora JS, Burnside EB (eds) 5th Computing strategies and software. World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, Canada, pp 65–66

    Google Scholar 

  • Batten GD (1998) Plant analysis using near infrared spectroscopy: the potential and the limitation. Aust J Exp Agric 38:697–706

    Article  Google Scholar 

  • Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332

    Article  CAS  Google Scholar 

  • Carstens H, Seehofer F (1960) How Virginia SCR is obtained and cultivated in the Federal Republic of Germany. Coresta 3:39–43

    Google Scholar 

  • Causse MA, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Causse MA, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D et al (2004) A genetic map of candidates genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  PubMed  CAS  Google Scholar 

  • Clayton EE (1969) The study of resistance to the black root rot disease of tobacco. Tob Sci 13:30–37

    Google Scholar 

  • Davis TM, Yu H (1997) A linkage map of the diploid strawberry, Fragaria vesca. J Hered 88:215–221

    CAS  Google Scholar 

  • de Roton C, Wiernib A, Wahlberg I, Vidal B (2005) Factors influencing the formation of Tobacco-Specific Nitrosamines in French air-cured tobaccos in trials and at the farm level. Contributions to Tobacco Research 21:305–320

    Google Scholar 

  • del Piano L, Abet M, Sorrentino C, Acanfora F, Cozzolino E, Di Muro A (2000) Genetic variability in Nicotiana tabacum and Nicotiana species as revealed by RAPD markers: 1. Development of the RAPD procedure. Beiträge zur tabakforshung International Contribution to Tobacco Research 19:1–15

    Google Scholar 

  • deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    PubMed  CAS  Google Scholar 

  • Diffee JT (1992) Tobacco analysis by NIR Spectroscopy. Handbook of Near-Infrared Analysis Practical spectroscopy series, vol 13. Marcel Dekker Inc., New York, pp 443–473

    Google Scholar 

  • Fardy A, Hitier G (1945) Espèces tétraploïdes et hybrides interspécifiques amphidiploïdes et triples diploïdes de Nicotiana, obtenus par l’action de la colchicine. Service d’exploitation industrielle des tabacs et des allumettes – Publication de l’Institut expérimental des tabacs de Bergerac. Paris Imprimerie Nationale 1945

  • Flandez-Galvez H, Ford R, Pang EC, Taylor PW (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106:1447–1456

    PubMed  CAS  Google Scholar 

  • Gupton CL, Burk LG (1973) Location of the factor for resistance to potato virus Y in tobacco. J Hered 64:289–290

    PubMed  CAS  Google Scholar 

  • Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P et al (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum X L. pennellii F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Jenczewski E, Ghérardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691

    Article  Google Scholar 

  • Johnson ES, Wolff MF, Wernsmann EA (2002) Marker-assisted selection for resistance to black shank disease in tobacco. Plant Dis 12:1303–1309

    Article  Google Scholar 

  • Julio E, Verrier JL, Dorlhac de Borne F (2006) Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet 112:335–346

    Article  PubMed  CAS  Google Scholar 

  • Koelle G (1961) Genetische analyse einer Y-virus (Rippen-braun) resistenten mutante der tabaksorte Virgin A. Zuchter 31:71–72

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kostoff DD (1930) Ontogeny, genetics, and cytology of Nicotiana hybrids (Sofia university) Genetica 12: 33–139

    Article  Google Scholar 

  • Lambrides CJ, Godwin ID, Lawn RJ, Imrie BC (2004) Segregation distortion for seed testa color in Mungbean (Vigna radiata L. Wilcek). J Hered 95:532–535

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lilncoln SE, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lefebvre V, Palloix A, Caranta C, Pochard R (1995) Construction of an intraspecific integrated linkage map of pepper using molecular markers and double haploid progenies. Genome 38:112–121

    PubMed  CAS  Google Scholar 

  • Lommel SA, Opperman CH, Burke M et al (2004) Sequencing and analysis of the Nicotiana tabacum genome. 58th Tobacco Science Research Conference (TSRC), 19–22 September 2004, Winston-Salem, North Carolina, Symposium Proceedings, pp 3–16

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenesis test. Mutation Res 133:173–215

    Google Scholar 

  • Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H (2003) Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet 106:765–770

    PubMed  CAS  Google Scholar 

  • Noguchi S, Tajima T, Yamamoto Y, Ohno T, Kubo T (1999) Deletion of a large genomic segment in tobacco varieties that are resistant to potato virus Y (PVY). Mol Gen Genet 262:822–829

    Article  PubMed  CAS  Google Scholar 

  • Palakarcheva M (1988) Interspecific hybridization in g. Nicotiana. Bulgarian Academy of Sciences Publishing House, Sofia

  • Paran I, Goldman IL, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548

    Article  CAS  Google Scholar 

  • Poisson C, Jourdain M, Figuères G (2003) Prédiction des teneurs en alcaloïdes, cendres, azote et sucres réducteurs du tabac grâce à des modèles MPLS développés à partir de données proches infrarouges. Oral Communication, Colloque Chimiométrie, Paris 3–4 December 2003

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F et al (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolour L.␣Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571

    Article  PubMed  CAS  Google Scholar 

  • Rossi L, Bindler G, Pijnenburg H, Isaac PG, Giraud-Henri I, Mahe M, Orvain C, Gadani F (2001) Potential of molecular marker analysis for variety identification in processed tobacco. Plant Var Seeds 14:89–101

    Google Scholar 

  • Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40

    Article  PubMed  CAS  Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato: 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • Sargent DJ, Davis TM, Tobutt KR, Wilkinson MJ, Battey NH, Simpson DW (2004) A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor Appl Genet 109:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1999) SAS OnlineDoc, version 8. SAS Institute, Cary, NC

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P et al (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Thoquet P, Ghérardi M, Journet EP, Kereszt A, Ané JM, Prosperi JM et al (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 21:4407–4414

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2001–2004) Windows QTL cartographer 20 department of statistics. North Carolina State University, Raleigh, NC (http://www.statgen.ncsu.edu/qtlcart/WQTLCart.htm)

    Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT et al (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687– 694

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka Y, Matsumoto S, Kojima S, Ohshima K, Okada N, Machida Y (1993) Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc Natl Acad Sci USA 90:6562–6566

    Article  PubMed  CAS  Google Scholar 

  • Yi HY, Rufty RC, Wernsman EA (1998) Mapping the root-knot nematode resistance gene (Rk) in tobacco with RAPD markers. Plant Dis 82:1319–1322

    Article  CAS  Google Scholar 

  • Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA (2004) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet 109:451–463

    Article  PubMed  CAS  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358

    Article  Google Scholar 

  • Zeng ZB (1993a) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10,972–10,976

    Article  CAS  Google Scholar 

  • Zeng ZB (1993b) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The first author is grateful for financial support from the ARN (Association pour la Recherche sur les Nicotianées). Many thanks are due to the Bergerac Tobacco Institute workers, for their excellent technical assistance in chemical analysis and field management. We thank Orléans Les Aubrais Research Center for smoking experiments and J.P. Biesse for assistance in statistical treatments. We also thank M.A. Grandbastien for helpful assistance in the SSAP experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Julio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julio, E., Denoyes-Rothan, B., Verrier, JL. et al. Detection of QTLs Linked to Leaf and Smoke Properties in Nicotiana tabacum Based on a Study of 114 Recombinant Inbred Lines. Mol Breeding 18, 69–91 (2006). https://doi.org/10.1007/s11032-006-9019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9019-0

Keywords

Navigation