Skip to main content
Log in

Design and synthesis of benzodiazepine-1,2,3-triazole hybrid derivatives as selective butyrylcholinesterase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new series of compounds based on benzodiazepine-1,2,3-triazole were synthesized and evaluated as cholinesterase inhibitors by Ellman’s method. The compounds proved to be selective inhibitors of butyrylcholinesterase (BuChE) over acetylcholinesterase. The most potent compound was 3,3-dimethyl-11-(3-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]diazepin-1-one, identified as a submicromolar inhibitor of BuChE with IC50 value of 0.2 µM. In addition, the amyloid-β self-aggregation evaluation studies for selected compounds showed potent inhibitory effects compared to donepezil. The docking and cell viability studies supported the potential of compound 9b-6 as significant BuChE inhibitor.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reitz C, Mayeux R (2015) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88:640–651. https://doi.org/10.1016/j.bcp.2013.12.024

    Article  CAS  Google Scholar 

  2. Mayeux R, Stern Y (2012) Epidemiology of alzheimer disease. Cold Spring Harb Perspect Med 2:1–18. https://doi.org/10.1101/cshperspect.a006239

    Article  Google Scholar 

  3. Reitz C, Brayne C, Mayeux R (2012) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152. https://doi.org/10.1038/nrneurol.2011.2

    Article  Google Scholar 

  4. Korolev IO (2014) Alzheimer’s disease: a clinical and basic science review. Med Stud Res J 4:24–33

    Google Scholar 

  5. Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:467–471. https://doi.org/10.1136/bmj.b158

    Article  Google Scholar 

  6. Scheltens P, Blennow K, Breteler MM, De Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 30:505–517. https://doi.org/10.1016/S0140-6736(15)01124-1

    Article  CAS  Google Scholar 

  7. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356. https://doi.org/10.1126/science.1072994

    Article  CAS  Google Scholar 

  8. Bulic B, Pickhardt M, Mandelkow E (2013) Progress and developments in tau aggregation inhibitors for alzheimer disease. J Med Chem 56:4135–4155. https://doi.org/10.1021/jm3017317

    Article  CAS  Google Scholar 

  9. Hooli B, Tanzi RE (2016) The genetic basis of Alzheimer’s disease. In: Wolfe MS (ed) Developing therapeutics for Alzheimer’s disease. Academic Press, Cambridge, pp 23–37. https://doi.org/10.1016/b978-0-12-802173-6.00002-2

    Chapter  Google Scholar 

  10. Buckley JS, Salpeter SR (2015) A risk-benefit assessment of dementia medications: systematic review of the evidence. Drugs Aging 32:453–467. https://doi.org/10.1007/s40266-015-0266-9

    Article  CAS  Google Scholar 

  11. Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 1:CD005593. https://doi.org/10.1002/14651858.cd005593

    Article  Google Scholar 

  12. Martorana A, Esposito Z, Koch G (2010) Beyond the cholinergic hypothesis: do current drugs work in Alzheimer’s disease? CNS Neurosci Ther 16:235–245. https://doi.org/10.1111/j.1755-5949.2010.00175.x

    Article  CAS  Google Scholar 

  13. Lane RM, Potkin SG, Enz A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9:101–124. https://doi.org/10.1017/S1461145705005833

    Article  CAS  Google Scholar 

  14. Lockridge O (2015) Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 148:34–46. https://doi.org/10.1016/j.pharmthera.2014.11.011

    Article  CAS  Google Scholar 

  15. Contestabile A (2011) The history of the cholinergic hypothesis. Behav Brain Res 221:334–340. https://doi.org/10.1016/j.bbr.2009.12.044

    Article  CAS  Google Scholar 

  16. Schmitz A (2016) Benzodiazepine use, misuse, and abuse: a review. Ment Health Clin 6:120–126. https://doi.org/10.9740/mhc.2016.05.120

    Article  Google Scholar 

  17. Schetinger MRC, Porto NM, Moretto MB, Morsch VM, Da Rocha JBT, Vieira V, Moro F, Neis RT, Bittencourt S, Bonacorso HG et al (2000) New benzodiazepines alter acetylcholinesterase and ATPDase activities. Neurochem Res 25:949–955. https://doi.org/10.1023/A:1007500424392

    Article  CAS  Google Scholar 

  18. Shweta V, Sushil K (2017) A mini review on synthetic approaches and biological activities of benzodiazepines. Mini Rev Org Chem 14:453–468. https://doi.org/10.2174/1570193X14666170511121927

    Article  Google Scholar 

  19. Kuno F, Otoguro K, Shiomi K, Iwai Y, Omura S (1996) Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from Penicillium sp. FO-4259. J Antibiot Tokyo 49:742–747

    Article  CAS  Google Scholar 

  20. Mohamed L (2012) Design and synthesis of novel 1,4-benzodiazepine derivatives and their biological evaluation as cholinesterase inhibitors. Arch Pharm Res 35:1369–1377. https://doi.org/10.1007/s12272-012-0806-3

    Article  CAS  Google Scholar 

  21. Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X (2016) Cu-catalyzed click reaction in carbohydrate chemistry. Chem Rev 116:3086–3240. https://doi.org/10.1021/acs.chemrev.5b00408

    Article  CAS  Google Scholar 

  22. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3c2004:AID-ANIE2004%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  23. Meldal M, Tornoe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015. https://doi.org/10.1021/cr0783479

    Article  CAS  Google Scholar 

  24. Mohammadi-Khanaposhtani M, Saeedi M, Zafarghandi NS, Mahdavi M, Sabourian R, Razkenari EK, Alinezhad H, Khanavi M, Foroumadi A, Shafiee A, Akbarzadeh T (2015) Potent acetylcholinesterase inhibitors: design, synthesis, biological evaluation, and docking study of acridone linked to 1,2,3-triazole derivatives. Eur J Med Chem 6:799–806. https://doi.org/10.1016/j.ejmech.2015.01.044

    Article  CAS  Google Scholar 

  25. Li JC, Zhang J, Rodrigues MC, Ding DJ, Longo JP, Azevedo RB, Muehlmann LA, Jiang CS (2016) Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity. Bioorg Med Chem Lett 26:3881–3885. https://doi.org/10.1016/j.bmcl.2016.07.017

    Article  CAS  Google Scholar 

  26. Wu G, Gao Y, Kang D, Huang B, Huo Z, Liu H, Poongavanam V, Zhan P, Liu X (2018) Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. Med Chem Commun 9:149–159. https://doi.org/10.1039/C7MD00457E

    Article  CAS  Google Scholar 

  27. Wang C, Ikhlef D, Kahlal S, Saillar J-Y, Astruc D (2016) Metal-catalyzed azide-alkyne “click” reactions: mechanistic overview and recent trends. Coord Chem Rev 316:1–20. https://doi.org/10.1016/j.ccr.2016.02.010

    Article  CAS  Google Scholar 

  28. Mahdavi M, Lijan H, Bahadorikhalili S, Ma’mani L, Ranjbar PR, Shafiee A (2016) Copper supported β-cyclodextrin grafted magnetic nanoparticles as an efficient recyclable catalyst for one-pot synthesis of 1-benzyl-1H-1,2,3-triazoldibenzodiazepinone derivatives via click reaction. RSC Adv 6:28838–28843

    Article  CAS  Google Scholar 

  29. Xu M, Peng Y, Zhu L, Wang S, Ji KJ, Rakesh P (2019) Triazole derivatives as inhibitors of Alzheimer’s disease: current developments and structure-activity relationships. Eur J Med Chem 180:656–672. https://doi.org/10.1016/j.ejmech.2019.07.059

    Article  CAS  Google Scholar 

  30. Agalave SG, Maujan SR, Pore VS (2011) Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J 6:2696–2718. https://doi.org/10.1002/asia.20110043

    Article  CAS  Google Scholar 

  31. Wang X, Huang B, Liu X, Zhan P (2016) Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov Today 21:118–132. https://doi.org/10.1016/j.drudis.2015.08.004

    Article  CAS  Google Scholar 

  32. Bozorova K, Zhaoa J, Haji A (2019) 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent Overview. Bioorg Med Chem 27:3511–3531. https://doi.org/10.1016/j.bmc.2019.07.005

    Article  CAS  Google Scholar 

  33. Jalili-Baleh L, Nadri H, Forootanfar H, Samzadeh-Kermani A, Küçükkılınç TT, Ayazgok B, Rahimifard M, Baeeri M, Doostmohammadi M, Firoozpour L et al (2018) Novel 3-phenylcoumarin–lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer’s disease. Bioorg Chem 79:223–234. https://doi.org/10.1016/j.bioorg.2018.04.030

    Article  CAS  Google Scholar 

  34. Abedinifar F, Farnia SMF, Mahdavi M, Nadri H, Moradi A, Ghasemi JB, Küçükkılınç TT, Firoozpour L, Foroumadi A (2018) Synthesis and cholinesterase inhibitory activity of new 2-benzofuran carboxamide-benzylpyridinum salts. Bioorg Chem 80:180–188. https://doi.org/10.1016/j.bioorg.2018.06.006

    Article  CAS  Google Scholar 

  35. Salehi N, Mirjalili BBF, Nadri H, Abdolahi Z, Forootanfar H, Samzadeh-Kermani A, Küçükkılınç TT, Ayazgok B, Emami S, Haririan I, Sharifzadeh M, Foroumadi A et al (2019) Synthesis and biological evaluation of new N-benzylpyridinium-based benzoheterocycles as potential anti-Alzheimer’s agents. Bioorg Chem 83:559–568. https://doi.org/10.1016/j.bioorg.2018.11.010

    Article  CAS  Google Scholar 

  36. Moradi A, Faraji L, Nadri H, Hasanpour Z, Moghadam FH, Pakseresht B, Golshani M, Moghimi S, Ramazani A, Firoozpour L et al (2018) Synthesis, docking study, and biological evaluation of novel umbellipherone/hymecromone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Med Chem Res 27:1741–1747. https://doi.org/10.1007/s00044-018-2187-8

    Article  CAS  Google Scholar 

  37. Pouramiri B, Moghimi S, Mahdavi M, Nadri H, Moradi A, Tavakolinejad-Kermani E, Firoozpour L, Asadipour A, Foroumadi A (2017) Synthesis and anticholinesterase activity of new substituted benzo[d]oxazole-based derivatives. Chem Biol Drug Des 89:783–789. https://doi.org/10.1111/cbdd.12902

    Article  CAS  Google Scholar 

  38. Asif M (2016) Biological potentials of biological active triazole derivatives: a short review. Org Chem Curr Res 5:2–9. https://doi.org/10.4172/2161-0401.1000173

    Article  CAS  Google Scholar 

  39. McGowan D, Nyanguile O, Cummings MD, Vendeville S, Vandyck K, Van den Broeck W, Boutton CW, De Bondt H, Quirynen L, Amssoms K et al (2009) 1,5-Benzodiazepine inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett 19:2492–2496. https://doi.org/10.1016/j.bmcl.2009.03.035

    Article  CAS  Google Scholar 

  40. Vatolina NA, Andin AN (2011) Reactions of dimedone-β-benzoylacrylic acid adduct with nitrogen-containing binucleophiles. Russ J Org Chem 47:408–411. https://doi.org/10.1134/S1070428011030146

    Article  CAS  Google Scholar 

  41. Albuquerque HMT, Santos CMM, Cavaleiro JAS, Silva AMS (2018) First intramolecular Diels–Alder reactions using chromone derivatives: synthesis of chromeno[3,4-b]xanthones and 2-(benzo[c]chromenyl)chromones. New J Chem 42:4251–4260. https://doi.org/10.1039/C7NJ05185A

    Article  CAS  Google Scholar 

  42. Yesilgul N, Seven O, Guliyev R, Akkaya EU (2018) Energy harvesting in a bodipy-functionalized rotaxane. J Org Chem 83:13228–13232. https://doi.org/10.1021/acs.joc.8b01928

    Article  CAS  Google Scholar 

  43. Hans RH, Guantai EM, Lategan C, Smith PJ, Wan B, Franzblau SG, Gut J, Rosenthal PJ, Chibale K (2010) Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg Med Chem Lett 20:942–944. https://doi.org/10.1016/j.bmcl.2009.12.062

    Article  CAS  Google Scholar 

  44. Ellman GL, Courtney KD, Andresjr V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  45. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  46. Morris GM, Huey R, Lindstrom W, Sanner M, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and Auto DockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  Google Scholar 

  47. Levine H (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410. https://doi.org/10.1002/pro.5560020312

    Article  CAS  Google Scholar 

  48. Mandegary A, Soodi M, Sharififar F, Ahmadi S (2014) Anticholinesterase, antioxidant, and Neuroprotective effects of Tripleurospermum disciforme and Dracocephalum multicaule. J Ayurveda Integr Med 5:162–166. https://doi.org/10.4103/0975-9476.140474

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by Tehran University of Medical Sciences (TUMS); Grant No. 96-01-92-34801.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Loghman Firoozpour or Alireza Foroumadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrazar, M., Hassankalhori, M., Toolabi, M. et al. Design and synthesis of benzodiazepine-1,2,3-triazole hybrid derivatives as selective butyrylcholinesterase inhibitors. Mol Divers 24, 997–1013 (2020). https://doi.org/10.1007/s11030-019-10008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-10008-x

Keywords

Navigation