Skip to main content
Log in

Synthesis, docking study, and biological evaluation of novel umbellipherone/hymecromone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors

  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A novel hybrid series of umbellipherone and benzyl amine scaffolds, linked via triazole ring, was synthesized and evaluated as both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. Most of the synthesized compounds showed moderate to high activities by using Ellman’s modified assay. Among the target compounds, 6e bearing 3-methoxy substituent on benzyl moiety was the most active one (AChE and BuChE IC50 = 3.4 and 1.1 μM, respectively). Finally, binding modes of the target compound was studied using molecular docking stimulations. The neuroprotectivity evaluation exhibited that this compound efficiently protected PC12 neurons against H2O2-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali MY, Jannat S, Jung HA, Choi RJ, Roy A, Choi JS (2016) Anti-Alzheimer’s disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pac J Trop Med 9:103–111

    Article  PubMed  CAS  Google Scholar 

  • Alipour M, Khoobi M, Moradi A, Nadri H, Moghadam FH, Emami S, Hasanpour Z, Foroumadi A, Shafiee A (2014) Synthesis and anti-cholinesterase activity of new 7-hydroxycoumarin derivatives. Eur J Med Chem 82:536–544

    Article  PubMed  CAS  Google Scholar 

  • Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 20:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Ávila J, Lim F, Moreno F, Belmonte C, Cuello AC (2002) Tau function and dysfunction in neurons. Mol Neurobiol 25:213–231

    Article  PubMed  Google Scholar 

  • Bagheri SM, Khoobi M, Nadri H, Moradi A, Emami S, Jalili‐Baleh L, Jafarpour F, Moghadam FH, Foroumadi A, Shafiee A (2015) Synthesis and structure-activity relationship study of tacrine-based pyrano [2,3-c] pyrazoles targeting AChE/BuChE and 15-LOX. Chem Biol Drug Des 86:1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Blokland A (1995) Acetylcholine: a neurotransmitter for learning and memory. Brain Res Rev 21:285–300

    Article  PubMed  CAS  Google Scholar 

  • Bukar Maina M, Al-Hilaly YK, Serpell LC (2016) Nuclear tau and its potential role in Alzheimer’s disease. Biomolecules 6:9–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burke A, Hall G, Yaarl R, Fleisher A, Dougherty J, Young J, Brand H, Tariot P (2015) Pocket Reference to Alzheimer’s Disease Management. Springer Healthcare Limited, New York, NY, p 35–40

    Google Scholar 

  • Cecilia Rodrigues Simoes M, Pereira Dias Viegas F, Soares Moreira M, de Freitas Silva M, Maximo Riquiel M, Mattos da Rosa P, Rosa Castelli M, Henrique dos Santos M, Gomes Soares M, Viegas C (2014) Donepezil: an important prototype to the design of new drug candidates for Alzheimer’s disease. Mini Rev Med Chem 14:2–19

    Article  CAS  Google Scholar 

  • Correia SC, Resende R, Moreira PI, Pereira CM (2015) Alzheimer’s disease-related misfolded proteins and dysfunctional organelles on autophagy menu. DNA Cell Biol 34:261–273

    Article  PubMed  CAS  Google Scholar 

  • De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry 40:10447–10457

    Article  PubMed  CAS  Google Scholar 

  • Dougherty DA, Stauffer DA (1990) Acetylcholine binding by a synthetic receptor: implications for biological recognition. Science 250:1558–1561

    Article  PubMed  CAS  Google Scholar 

  • Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, Zhang T, Chen X, Huang J, Sun X, Li Qn (2015) Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer’s disease. Neurobiol Aging 36:1792–1807

    Article  PubMed  CAS  Google Scholar 

  • Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187:10–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88IN191. -9095

    Article  Google Scholar 

  • Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greig NH, Utsuki T, Yu QS, Zhu X, Holloway HW, Perry T, Lee B, Ingram DK, Lahiri DK (2001) A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin 17:159–165

    Article  PubMed  CAS  Google Scholar 

  • Greig NH, Lahiri DK, Sambamurti K (2002) Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr 14:77–91

    Article  PubMed  Google Scholar 

  • Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates.J Am Chem Soc 127(1):210–216

    Article  PubMed  CAS  Google Scholar 

  • Mao F, Huang L, Luo Z, Liu A, Lu C, Xie Z, Li X (2012) O-Hydroxyl-or o-amino benzylamine-tacrine hybrids: multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation. Bioorg Med Chem 20:5884–5892

    Article  PubMed  CAS  Google Scholar 

  • O’Boyle NM1, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: An open chemical toolbox. J. Cheminform 3:33–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer AM (2011) Neuroprotective therapeutics for Alzheimer’s disease: progress and prospects. Trends Pharmacol Sci 32:141–147

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Dröse S, Brandt U, Savaskan E (2009) Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci 106:20057–20062

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam SR, Ellis EM (2013) Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson’s disease. J Neurosci Res 91:453–461

    Article  PubMed  CAS  Google Scholar 

  • Torres FC, Gonçalves GA, Vanzolini KL, Merlo AA, Gauer B, Holzschuh M, Andrade S, Piedade M, Garcia SC, Carvalho I, Poser GL (2016) Combining the pharmacophore features of coumarins and 1, 4-substituted 1, 2, 3-triazoles to design new acetylcholinesterase inhibitors: Fast and easy generation of 4-methylcoumarins/1, 2, 3-triazoles conjugates via click chemistry. J Braz Chem Soc 27:1541–1550

    CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    PubMed  PubMed Central  CAS  Google Scholar 

  • Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res Int 2013:963248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng H, Koo EH (2006) The amyloid precursor protein: beyond amyloid. Mol Neurodegener 1:5–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Research Council of Tehran University of Medical Sciences and Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Khoobi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Faraji, L., Nadri, H. et al. Synthesis, docking study, and biological evaluation of novel umbellipherone/hymecromone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Med Chem Res 27, 1741–1747 (2018). https://doi.org/10.1007/s00044-018-2187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-018-2187-8

Keywords

Navigation