Skip to main content
Log in

Real-Time Characterization of Pultrusion Processes with a Temperature Control

  • Published:
Mechanics of Composite Materials Aims and scope

For the real time characterization of pultrusion processes with a complex temperature control, two finite-element modeling approaches utilizing a continuous model with lumped material properties for a cured composite have been developed. The first procedure, based on the mixed time integration scheme and the nodal control volumes method, is working in the ANSYS Mechanical environment, but the second procedure is performed using the ANSYS CFX software with the cure reaction introduced as an additional variable. New cure sensors measuring the temperature and electrical resistivity of resins have been developed for the inline process control. To demonstrate the accuracy and reliability of the numerical procedures and new sensors, two technological processes with a temperature control examining the pultrusion of I-beam and rod profiles have successfully been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. D. Han, D. S. Lee, and H. B. Chin, “Development of a mathematical model for the pultrusion process,” Polym. Eng. and Sci., 26, No. 6, 393-404 (1986).

    Article  CAS  Google Scholar 

  2. S. C. Joshi and Y. C. Lam, “Integrated approach for modeling cure and crystallization kinetics of different polymers in 3D pultrusion simulation,” J. Mater. Process. Tech., 174, 178-182 (2006).

    Article  CAS  Google Scholar 

  3. P. Carlone, G. S. Palazzo, and R. Pasquino, “Pultrusion manufacturing process development by computational modeling and methods,” Math. Comput. Model., 44, 701-709 (2006).

    Article  Google Scholar 

  4. Y. R. Chachad, J. A. Roux, and J. G. Vaughan, “Three-dimensional characterization of pultruded fiberglass-epoxy composite materials,” J. Reinf. Plast. Comp., 14, 495-512 (1995).

    Article  CAS  Google Scholar 

  5. M. Valliappan, J. A. Roux, J. G. Vaughan, and E. S. Arafat, “Die and post-die temperature and cure in graphite/epoxy composites,” Composites: Part B, 27, 1-9 (1996).

    Article  Google Scholar 

  6. I. Baran, C. C. Tutum, and J. H. Hattel, “The effect of thermal contact resistance on the thermosetting pultrusion process,” Composites: Part B, 45, 995-1000 (2013).

    Article  CAS  Google Scholar 

  7. R. M. Hackett and S.-Z. Zhu, “Two-dimensional finite-element model of the pultrusion process,” J. Reinf. Plast. Comp., 11, 1322-1351 (1992).

    Article  CAS  Google Scholar 

  8. B. R. Suranto, L. Ye, and Y. W. Mai, “Simulation of temperature and curing profiles in pultruded composite rods,” Compos. Sci. Technol., 58, 191-197 (1998).

    Article  Google Scholar 

  9. X. L. Liu, I. G. Crouch, and Y. C. Lam, “Simulation of heat transfer and cure in pultrusion with a general-purpose finite-element package,” Compos. Sci. Technol., 60, 857-864 (2000).

    Article  CAS  Google Scholar 

  10. S. C. Joshi and Y. C. Lam, “Three-dimensional finite-element/nodal-control-volume simulation of the pultrusion process with temperature-dependent material properties including resin shrinkage,” Compos. Sci. Technol., 61, 1539-1547 (2001).

    Article  CAS  Google Scholar 

  11. I. Baran, J. H. Hattel, and C. C. Tutum, “Thermochemical modeling strategies for the pultrusion process,” Appl. Compos. Mater., 20, 1247-1263 (2013).

    Article  CAS  Google Scholar 

  12. P. Carlone, I. Baran, J. H. Hattel, and G. S. Palazzo, “Computational approaches for modeling the multiphysics in pultrusion process,” Adv. Mech. Eng., article ID 301875, 14 P (2013).

  13. E. Barkanov, P. Akishin, N. L. Miazza, and S. Galvez, “ANSYS-based algorithms for a simulation of pultrusion processes,” Mech. Adv. Mater. Struc., 24, No. 5, 377-384 (2017).

    Article  Google Scholar 

  14. Y. R. Chachad, J. A. Roux, J. G. Vaughan, and E. S. Arafat, “Thermal model for three-dimensional irregular shaped pultruded fiberglass composites,” J. Compos. Mater., 30, No. 6, 692-721 (1996).

    Article  CAS  Google Scholar 

  15. Z. Ding, S. Li, and L. J. Lee, “Influence of heat transfer and curing on the quality of pultruded composites. II: Modeling and simulation,” Polym. Composites, 23, No. 5, 957-969 (2002).

    Article  CAS  Google Scholar 

  16. X.-L. Liu, “Numerical modeling on pultrusion of composite I beam,” Composites: Part A, 32, 663-681 (2001).

    Article  Google Scholar 

  17. W. A. Khan and J. Methven, “Determination of the duty cycle in thermoset pultrusion,” Proc. of 36th Int. MATADOR Conf., London, 75-78 (2010).

  18. J. A. Roux, J. G. Vaughan, R. Shanku, E. S. Arafat, J. L. Bruce, and V. R. Johnson, “Comparison of measurements and modeling for pultrusion of a fiberglass/epoxy I-beam,” J. Reinf. Plast. Comp., 17, No. 17, 1557-1579 (1998).

    Article  CAS  Google Scholar 

  19. X. L. Liu and W. Hillier, “Heat transfer and cure analysis for the pultrusion of a fiberglass-vinyl ester I beam,” Compos. Struct., 47, 581-588 (1999).

    Article  Google Scholar 

  20. G. Liang, A. Garg, and K. Chandrashekhara, “Cure characterization of pultruded soy-based composites,” J. Reinf. Plast. Comp., 24, No. 14, 1509-1520 (2005).

    Article  CAS  Google Scholar 

  21. I. Tena, M. Sarrionandia, J. Torre, and J. Aurrekoetxea, “The effect of process parameters on ultraviolet cured out of die bent pultrusion process,” Composites: Part B, 89, 9-17 (2016).

    Article  CAS  Google Scholar 

  22. P. Akishin, E. Barkanov, N. Miazza, and S. Galvez, “Curing kinetic models of resins for microwave assisted pultrusion,” Key Eng. Mat., 721, 92-96 (2017).

    Article  Google Scholar 

  23. URL: http://www.synthesites.com/ipage.php?p=9&l=11, December 5, 2016.

  24. A. Maffezzoli, A. Trivisano, M. Opalicki, J. Mijovic, and J. M. Kenny, “Correlation between dielectric and chemorheological properties during cure of epoxy-based composites,” J. Mater. Sci., 29, No. 3, 800-808 (1994).

    Article  CAS  Google Scholar 

  25. E. Barkanov, P. Akishin, N. L. Miazza, S. Galvez, and N. Pantelelis, “Experimental validation of thermochemical algorithm for a simulation of pultrusion processes,” J. Phys. Conf. Ser., 991, 012009 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of European Regional Development Fund for the project No. 1.1.1.1/18/A/053 “An effectiveness improvement of conventional pultrusion processes” is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Barkanov.

Additional information

Russian translation is published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 2, pp. 203-224, March-April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkanov, E., Akishin, P., Namsone, E. et al. Real-Time Characterization of Pultrusion Processes with a Temperature Control. Mech Compos Mater 56, 135–148 (2020). https://doi.org/10.1007/s11029-020-09868-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09868-4

Keywords

Navigation