Skip to main content
Log in

New expanding cavity model for conical indentation and its application to determine an intrinsic length scale of polymeric materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

New expanding spherical cavity model (ECM) for conical indentation is proposed. For polymeric materials description, the model incorporates isotropic non-monotonic strain hardening. For capturing the indentation size effect (ISE), the model incorporates the strain gradient dependence in yield strength based on lower-order strain gradient plasticity assumptions. Specifically, the forward gradient of the equivalent (accumulated) plastic strain is utilized as a non-local part of the yield strength. To predict the indentation depth-dependent hardness based on the proposed model, it is sufficient to numerically integrate one nonlinear ODE of the first order, and then calculate the definite integral. For the local perfect plasticity model, the hardness is obtained as an analytical expression that differs from known ECMs. The hardness estimate obtained numerically using the proposed model is compared with the experimental ISE data for polycarbonate (PC) and polymethyl methacrylate (PMMA). For the local perfect plasticity model, the formula obtained in the study is compared with the experimental data on the hardness of preliminary work-hardened materials. In both cases, the model shows good agreement with the experimental data. Fitting the experimental data on ISE, we found that intrinsic length scale of PMMA should be near 3 microns and near 9 microns for PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Most of the data are given for metallic materials; however, the leftmost experimental points correspond to polymeric materials. For them, it is not clear what is meant by the state of full-hardening, which is indicated in [46] (see, for example, stress–strain curve for PMMA on Fig. 8). In [34] it is indicated that the pre-strain of the samples was in limits 1.1 and 1.5.

  2. In contrast to viscoplastic models, in which the plastic strain rate vanishes at the elastic–plastic boundary and increases rapidly with deepening into the plastic region up to values comparable to those predicted by rate-independent plasticity.

References

  1. Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. T ASME 106(4), 326–330 (1984). https://doi.org/10.1115/1.3225725

    Article  Google Scholar 

  2. Aifantis, E.C.: The physics of plastic deformation. Int. J. Plast. 3(3), 211–247 (1987). https://doi.org/10.1016/0749-6419(87)90021-0

    Article  Google Scholar 

  3. Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35(3–6), 259–280 (2003). https://doi.org/10.1016/S0167-6636(02)00278-8

    Article  Google Scholar 

  4. Alisafaei, F., Han, C.-S.: Indentation depth dependent mechanical behavior in polymers. Adv. Cond. Matter Phys. 2015, 391579 (2015). https://doi.org/10.1155/2015/391579

    Article  Google Scholar 

  5. Ames, N.M., Srivastava, V., Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications. Int. J. Plast. 25(8), 1495–1539 (2009). https://doi.org/10.1016/j.ijplas.2008.11.005

    Article  Google Scholar 

  6. Anand, L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46(1), 78–82 (1979). https://doi.org/10.1115/1.3424532

    Article  MathSciNet  Google Scholar 

  7. Atkins, A.G., Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13(3), 149–164 (1965). https://doi.org/10.1016/0022-5096(65)90018-9

    Article  Google Scholar 

  8. Balta Calleja, F.J., Flores, A., Michler, G.H.: Microindentation studies at the near surface of glassy polymers: Influence of molecular weight. J. Appl. Polym. Sci. 93, 1951–1956 (2004). https://doi.org/10.1002/app.20665

    Article  Google Scholar 

  9. Bhattacharya, A.K., Nix, W.D.: Finite element analysis of cone indentation. Int. J. Solids Struct. 27(8), 1047–1058 (1991). https://doi.org/10.1016/0020-7683(91)90100-T

    Article  Google Scholar 

  10. Bilby, B.A., Lardner, L.R.T., Stroh, A.N.: Continuous distributions of dislocations and the theory of plasticity. In: Actes du IXe congres international de mecanique appliquee (Bruxelles, 1956), V. 8, pp. 35–44 (1957)

  11. Bishop, R.F., Hill, R., Mott, N.F.: The theory of indentation and hardness tests. Proc. Phys. Soc. 57(321), 147–159 (1945). https://doi.org/10.1088/0959-5309/57/3/301

    Article  Google Scholar 

  12. Briscoe, B.J., Fiori, L., Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D Appl. Phys. 31, 2395–2405 (1998). https://doi.org/10.1088/0022-3727/31/19/006

    Article  Google Scholar 

  13. Cheng, L., Guo, T.F.: Void interaction and coalescence in polymeric materials. Int. J. Solids Struct. 44(6), 1787–1808 (2007). https://doi.org/10.1016/j.ijsolstr.2006.08.007

    Article  Google Scholar 

  14. Chong, A.C.M., Lam, D.C.C.: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14(10), 4103–4110 (1999). https://doi.org/10.1557/JMR.1999.0554

    Article  Google Scholar 

  15. Dorogoy, A., Rittel, D., Brill, A.: Experimentation and modeling of inclined ballistic impact in thick polycarbonate plates. Int. J. Impact Eng 38(10), 804–814 (2011). https://doi.org/10.1016/j.ijimpeng.2011.05.001

    Article  Google Scholar 

  16. Dugdale, D.S.: Cone indentation experiments. J. Mech. Phys. Solids 2(4), 265–277 (1954). https://doi.org/10.1016/0022-5096(54)90017-4

    Article  Google Scholar 

  17. Durban, D., Baruch, M.: On the problem of a spherical cavity in an infinite elasto-plastic medium. J. Appl. Mech. 43(4), 633–638 (1976). https://doi.org/10.1115/1.3423946

    Article  Google Scholar 

  18. Durban, D., Fleck, N.A.: Singular plastic fields in steady penetration of a rigid cone. J. Appl. Mech. 59(4), 706–710 (1992). https://doi.org/10.1115/1.2894032

    Article  Google Scholar 

  19. Durban, D., Masri, R.: Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium. Int. J. Solids Struct. 41(20), 5697–5716 (2004). https://doi.org/10.1016/j.ijsolstr.2004.03.009

    Article  Google Scholar 

  20. Durban, D., Masri, R.: Conical indentation of strain-hardening solids. Eur. J. Mech. A Solid 27(2), 210–221 (2008). https://doi.org/10.1016/j.euromechsol.2007.05.007

    Article  Google Scholar 

  21. Evans, P.D.: The hardness and abrasion of polymers. PhD dissertation. Department of Chemical Engineering and Chemical Technology. Imperial College London (1987)

  22. Felder, E., Ramond-Angelelis, C.: Mechanical analysis of indentation experiments with a conical indenter. Philos. Mag. 86(33–55), 5219–5230 (2006). https://doi.org/10.1080/14786430600589071

    Article  Google Scholar 

  23. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994). https://doi.org/10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  24. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997). https://doi.org/10.1016/S0065-2156(08)70388-0

    Article  Google Scholar 

  25. Flores, A., Balta Calleja, F.J., Attenburrow, G.E., Bassett, D.C.: Microhardness studies of chain-extended PE: III. Correlation with yield stress and elastic modulus. Polymer 41(14), 5431–5435 (2000). https://doi.org/10.1016/S0032-3861(99)00755-7

    Article  Google Scholar 

  26. Gao, X.L.: New expanding cavity model for indentation hardness including strain-hardening and indentation size effects. J. Mater. Res. 21(5), 1317–1326 (2006). https://doi.org/10.1557/jmr.2006.0158

    Article  Google Scholar 

  27. Gao, X.-L.: An expanding cavity model incorporating strain-hardening and indentation size effects. Int. J. Solids Struct. 43(21), 6615–6629 (2006). https://doi.org/10.1016/j.ijsolstr.2006.01.008

    Article  Google Scholar 

  28. Gao, X.-L., Jing, X.N., Subhash, G.: Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 43(7–8), 2193–2208 (2006). https://doi.org/10.1016/j.ijsolstr.2005.03.062

    Article  Google Scholar 

  29. Green, A.E., Shield, R.T.: Finite elastic deformation of incompressible isotropic bodies. Proc. R. Soc. Lond. A 202, 407–419 (1950). https://doi.org/10.1098/rspa.1950.0109

    Article  MathSciNet  Google Scholar 

  30. Han, C.S., Nikolov, S.: Indentation size effects in polymers and related rotation gradients. J. Mater. Res. 22, 1662–1672 (2007). https://doi.org/10.1557/JMR.2007.0197

    Article  Google Scholar 

  31. Haward, R.N., Thackray, G.: The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc. R. Soc. Lond. A 302(1471), 453–472 (1967). https://doi.org/10.1098/rspa.1968.0029

    Article  Google Scholar 

  32. Hernot, X., Bartier, O.: An expanding cavity model incorporating pile-up and sink-in effects. J. Mater. Res. 27(1), 132–140 (2012). https://doi.org/10.1557/jmr.2011.394

    Article  Google Scholar 

  33. Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    Google Scholar 

  34. Hirst, W., Howse, M.G.J.W.: The indentation of materials by wedges. Proc. R. Soc. Lond. A 311, 429–444 (1969). https://doi.org/10.1098/rspa.1969.0126

    Article  Google Scholar 

  35. Huang, Y., Qu, S., Hwang, K.C., Li, M., Gao, H.: A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20(4–5), 753–782 (2004). https://doi.org/10.1016/j.ijplas.2003.08.002

    Article  Google Scholar 

  36. Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18(2), 115–126 (1970). https://doi.org/10.1016/0022-5096(70)90029-3

    Article  Google Scholar 

  37. Johnson, K.L.: Normal contact of inelastic solids. In: Contact Mechanics, Cambridge University Press, Cambridge, pp. 153–201 (1985). https://doi.org/10.1017/CBO9781139171731.007

  38. Kröner, E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. An. 4(1), 273–334 (1959). https://doi.org/10.1007/BF00281393

    Article  MathSciNet  Google Scholar 

  39. Lam, D.C.C., Chong, A.C.M.: Indentation model and strain gradient plasticity law for glassy polymers. J. Mater. Res. 14(9), 3784–3788 (1999). https://doi.org/10.1557/JMR.1999.0512

    Article  Google Scholar 

  40. Lee, E., Liu, D.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38(1), 19–27 (1967). https://doi.org/10.1063/1.1708953

    Article  Google Scholar 

  41. Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36(1), 1–6 (1969). https://doi.org/10.1115/1.3564580

    Article  MathSciNet  Google Scholar 

  42. Levitas, V.I.: Large Deformation of Materials with Complex Rheological Properties at Normal and High Pressure. Nova Science Publishers, New York (1996)

    Google Scholar 

  43. Liu, D., Dunstan, D.J.: Material length scale of strain gradient plasticity: a physical interpretation. Int. J. Plast. 98, 156–174 (2017). https://doi.org/10.1016/j.ijplas.2017.07.007

    Article  Google Scholar 

  44. Lockett, F.J.: Indentation of a rigid/plastic material by a conical indenter. J. Mech. Phys. Solids 11(5), 345–355 (1963). https://doi.org/10.1016/0022-5096(63)90035-8

    Article  Google Scholar 

  45. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995). https://doi.org/10.1557/JMR.1995.0853

    Article  Google Scholar 

  46. Marsh, D.M.: Plastic flow in glass. Proc. R. Soc. Lond. A 279, 420–435 (1964). https://doi.org/10.1098/rspa.1964.0114

    Article  Google Scholar 

  47. Mata, M., Casals, O., Alcala, J.: The plastic zone size in indentation experiments: the analogy with the expansion of a spherical cavity. Int. J. Solids Struct. 43(20), 5994–6013 (2006). https://doi.org/10.1016/j.ijsolstr.2005.07.002

    Article  Google Scholar 

  48. Meijer, H.E.H., Govaert, L.E.: Mechanical performance of polymer systems: the relation between structure and properties. Prog. Polym. Sci. 30, 915–938 (2005). https://doi.org/10.1016/j.progpolymsci.2005.06.009

    Article  Google Scholar 

  49. Naghdi, P.M.: Stresses and displacements in an elastic-plastic wedge. J. Appl. Mech. 24(1), 98–104 (1957). https://doi.org/10.1115/1.4011452

    Article  MathSciNet  Google Scholar 

  50. Prager, W., Hodge, P.G.: The Theory of Perfectly Plastic Solids. Wiley, New York (1951)

    Google Scholar 

  51. Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., Adharapurapu, R.R.: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 43(7–8), 2318–2335 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.040

    Article  Google Scholar 

  52. Sakharova, N.A., Fernandes, J.V., Antunes, J.M., Oliveira, M.C.: Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int. J. Solids Struct. 46(5), 1095–1104 (2009). https://doi.org/10.1016/j.ijsolstr.2008.10.032

    Article  Google Scholar 

  53. Santos, T., Srivastava, A., Rodriguez-Martinez, J.A.: The combined effect of size, inertia and porosity on the indentation response of ductile materials. Mech. Mater. 153, 103674 (2021). https://doi.org/10.1016/j.mechmat.2020.103674

    Article  Google Scholar 

  54. Shapiro, G.S.: Elastic-plastic equilibrium of a wedge and discontinuous solutions in the theory of plasticity. J. Appl. Math. Mech. 16(1), 101–106 (1952). (in Russian)

    MathSciNet  Google Scholar 

  55. Sevastyanov, G.M.: Adiabatic heating effect in elastic-plastic contraction / expansion of spherical cavity in isotropic incompressible material. Eur. J. Mech. A Solid 87, 104223 (2021). https://doi.org/10.1016/j.euromechsol.2021.104223

    Article  MathSciNet  Google Scholar 

  56. Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 47–57 (1965). https://doi.org/10.1016/0020-7225(65)90019-4

    Article  MathSciNet  Google Scholar 

  57. Sokolovsky, V.V.: Theory of Plasticity. Vischaya shkola, Moscow (1969). (in Russian)

    Google Scholar 

  58. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998). https://doi.org/10.1016/S1359-6454(98)00153-0

    Article  Google Scholar 

  59. Studman, C.J., Moore, M.A., Jones, S.E.: On the correlation of indentation experiments. J. Phys. D Appl. Phys. 10(6), 949–956 (1977). https://doi.org/10.1088/0022-3727/10/6/019

    Article  Google Scholar 

  60. Tabor, D.: Hardness of Metals. Clarendon Press, Oxford (1951)

    Google Scholar 

  61. Turnbull, A., White, D.: Nanoindentation and microindentation of weathered unplasticised poly-vinyl chloride (UPVC). J. Mater. Sci. 31, 4189–4198 (1996). https://doi.org/10.1007/BF00356438

    Article  Google Scholar 

  62. Tvergaard, V., Needleman, A.: Polymer indentation: Numerical analysis and comparison with a spherical cavity model. J. Mech. Phys. Solids 59(9), 1669–1684 (2011). https://doi.org/10.1016/j.jmps.2011.06.006

    Article  Google Scholar 

  63. Voyiadjis, G.Z., Song, Y.: Strain gradient continuum plasticity theories: theoretical, numerical and experimental investigations. Int J Plasticity 121, 21–75 (2019). https://doi.org/10.1016/j.ijplas.2019.03.002

    Article  Google Scholar 

  64. Weiss A., Durban D.: Cavitation theory applied to polycarbonate ballistic response. In: 28th International Symposium on Ballistics (2014)

  65. Wright, S.C., Huang, Y., Fleck, N.A.: Deep penetration of polycarbonate by a cylindrical punch. Mech. Mater. 13(4), 277–284 (1992). https://doi.org/10.1016/0167-6636(92)90020-E

    Article  Google Scholar 

  66. Wu, P.D., van der Giessen, E.: On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993). https://doi.org/10.1016/0022-5096(93)90043-F

    Article  Google Scholar 

  67. Yuan, H., Chen, J.: Analysis of size effects based on a symmetric lower-order gradient plasticity model. Comp. Mater. Sci. 19(1–4), 143–157 (2000). https://doi.org/10.1016/S0927-0256(00)00149-X

    Article  Google Scholar 

  68. Yun, G., Qin, J., Huang, Y., Hwang, K.C.: A study of lower-order strain gradient plasticity theories by the method of characteristics. Eur. J. Mech. A Solid 23(3), 387–394 (2004). https://doi.org/10.1016/j.euromechsol.2004.02.003

    Article  Google Scholar 

  69. Zhang, P., Li, S.X., Zhang, Z.F.: General relationship between strength and hardness. Mat. Sci. Eng. A Struct. 529, 62–73 (2011). https://doi.org/10.1016/j.msea.2011.08.061

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Russian Science Foundation (Project No 22-11-00163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgiy M. Sevastyanov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

In [46] (Fig. 5 on p. 425), the abscissa axis displays the complex \(B\ln z = {3 \mathord{\left/ {\vphantom {3 {\left( {3 - \lambda } \right)}}} \right. \kern-0pt} {\left( {3 - \lambda } \right)}}\ln \left[ {{3 \mathord{\left/ {\vphantom {3 {\left( {\lambda + 3\mu - \lambda \mu } \right)}}} \right. \kern-0pt} {\left( {\lambda + 3\mu - \lambda \mu } \right)}}} \right]\) for various materials. Here, \(\lambda = \left( {1 - 2\nu } \right){{\sigma_{y} } \mathord{\left/ {\vphantom {{\sigma_{y} } E}} \right. \kern-0pt} E}\), \(\mu = \left( {1 + \nu } \right){{\sigma_{y} } \mathord{\left/ {\vphantom {{\sigma_{y} } E}} \right. \kern-0pt} E}\). In our study in Fig. 6 (hexagram markers), we use the values \(\lg \left( {{E \mathord{\left/ {\vphantom {E {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}} \right)\) extracted from the Marsh data (see table below; the first line of the table corresponds to the rightmost hexagram on Fig. 6, further from right to left). Poisson’s ratio values are taken from publicly available sources.

Material

Poisson’s ratio \(\nu\)

\(B\ln z\)(extracted)

\({H \mathord{\left/ {\vphantom {H {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\)(extracted)

\(\lg \left( {{E \mathord{\left/ {\vphantom {E {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}} \right)\)(calculated)

\({H \mathord{\left/ {\vphantom {H {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\), calculated by Eq. (2) (Johnson model, incompressible elasticity), with relative error

\({H \mathord{\left/ {\vphantom {H {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\), calculated by Eq. (36) (Johnson model, compressible elasticity), with relative error

\({H \mathord{\left/ {\vphantom {H {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\), calculated by Eq. (37) (Durban–Masri model, compressible elasticity), with relative error

Tellurium-lead

0.42

6.2

2.95

2.86

4.31 (+ 46%)

4.21 (+ 43%)

4.21 (+ 43%)

Aluminum

0.33

5.5

3.05

2.55

3.83 (+ 26%)

3.64 (+ 19%)

3.64 (+ 19%)

Copper

0.36

5.1

3.00

2.38

3.57 (+ 19%)

3.41 (+ 14%)

3.42 (+ 14%)

Mild steel

0.3

4.8

2.95

2.24

3.36 (+ 14%)

3.15 (+ 7%)

3.16 (+ 7%)

Steel 1

0.28

4.5

3.10

2.11

3.16 (+ 2%)

2.94 (− 5%)

2.96 (− 5%)

Steel 2

0.28

4.3

2.95

2.02

3.02 (+ 2%)

2.81 (− 5%)

2.83 (− 4%)

Steel 3

0.28

4.1

2.75

1.93

2.88 (+ 5%)

2.67 (− 3%)

2.61 (− 5%)

Steel 4

0.28

3.9

2.60

1.84

2.74 (+ 5%)

2.54 (− 2%)

2.60 (0%)

Steel 5

0.28

3.7

2.50

1.76

2.62 (+ 5%)

2.43 (− 3%)

2.49 (0%)

Copper-beryllium

0.285

3.5

2.35

1.67

2.48 (+ 6%)

2.31 (− 2%)

2.38 (+ 1%)

PMMA 1

0.38

3.2

2.25

1.55

2.30 (+ 2%)

2.20 (− 2%)

2.26 (0%)

Epoxy resin

0.35

3.1

2.10

1.50

2.22 (+ 6%)

2.11 (0%)

2.18 (+ 4%)

Polystyrene

0.34

3.0

2.30

1.46

2.16 (− 6%)

2.05 (− 11%)

2.13 (− 7%)

PMMA 2

0.38

2.8

1.95

1.38

2.04 (+ 5%)

1.96 (0%)

2.03 (+ 4%)

Polyacetal resin

0.44

1.3

1.15

0.73

1.04 (− 10%)

1.11 (− 3%)

1.05 (− 9%)

Experimental data [34], Table 1 on p. 432) (the first line of the table corresponds to the rightmost pentagram in Fig. 6 in the presented study, further from right to left). Poisson’s ratio values are taken from publicly available sources.

Material

Poisson’s ratio \(\nu\)

\({E \mathord{\left/ {\vphantom {E {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\)

\({H \mathord{\left/ {\vphantom {H {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\)

\({H \mathord{\left/ {\vphantom {H {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\), calculated by Eq. (2) (Johnson model, incompressible elasticity), with relative error

\({H \mathord{\left/ {\vphantom {H {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\), calculated by Eq. (36) (Johnson model, compressible elasticity), with relative error

\({H \mathord{\left/ {\vphantom {H {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\), calculated by Eq. (37) (Durban – Masri model, compressible elasticity), with relative error

Lead alloy

0.4

828

3.16

4.40 (+ 39%)

4.276 (+ 35%)

4.272 (+ 35%)

Aluminum

0.33

459

3.35

4.00 (+ 19%)

3.813 (+ 14%)

3.803 (+ 14%)

Copper

0.36

318

3.22

3.76 (+ 17%)

3.6 (+ 12%)

3.6 (+ 12%)

Mild steel

0.3

268

3.27

3.64 (+ 11%)

3.43 (+ 5%)

3.43 (+ 5%)

Beryllium copper

0.285

102.6

2.64

3.00 (+ 14%)

2.80 (+ 6%)

2.83 (+ 7%)

PTFE

0.46

22.6

1.73

2.00 (+ 16%)

1.97 (+ 14%)

1.99 (+ 15%)

PCTFE

0.38

15.3

1.28

1.74 (+ 36%)

1.70 (+ 33%)

1.76 (+ 38%)

Nylon

0.4

13.1

1.25

1.63 (+ 30%)

1.62 (+ 30%)

1.66 (+ 33%)

Perspex

0.38

11.2

1.07

1.53 (+ 43%)

1.53 (+ 43%)

1.57 (+ 47%)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevastyanov, G.M. New expanding cavity model for conical indentation and its application to determine an intrinsic length scale of polymeric materials. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03921-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03921-2

Navigation