Skip to main content
Log in

Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

  • Published:
Mechanics of Composite Materials Aims and scope

An Erratum to this article was published on 04 September 2017

This article has been updated

The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Change history

  • 04 September 2017

    An erratum to this article has been published.

References

  1. E. P. Giannelis, “Polymer/layered silicate nanocomposites,” Adv. Mater, 8, 29-35 (1996).

    Article  Google Scholar 

  2. S. S. Ray and M. Okamoto, “Polymer/layered silicate nano-composites: a review from preparation to processing,” Prog. Polym. Sci, 28, 1539-1641 (2003).

    Article  Google Scholar 

  3. T. P. Mohan and Kanny R., “Effect of curing temperature of epoxy clay nanocomposites on their mechanical properties,” Int. J. Plast. Technol., 13, No. 2, 123-132 (2009).

    Article  Google Scholar 

  4. Y. Yuan-Hsiang, L. Ching-Yi, Y. Jui-Ming, and L. Wei-Hsiang, “Preparation and properties of poly(vinyl alcohol)-clay nanocomposite materials,” Polymer, 44, 3553-3560 (2003).

    Article  Google Scholar 

  5. S. Pavlidou and C.D. Papaspyrides, “A review on polymer–layered silicate nanocomposites,” Prog. Polim. Sci., 33, 1119-1198 (2008).

    Article  Google Scholar 

  6. M. Aydin, T. Uyar, M. Atilla Tasdelen, and Y. Yagci, “Polymer/clay nanocomposites through multiple hydrogen-bonding interactions,” J. Polym. Sci. A Polym. Chem., 53, 5, 650 (2015).

    Article  Google Scholar 

  7. Y. Ye and Q. Wang, “A polymer/clay nanocomposite gel via chlorinated paraffin solvent initiated photopolymerization with electrorheological performance,” RSC Adv., 5, 7752 (2015).

    Article  Google Scholar 

  8. L. Q. Zhang, Y. R. Liang, Y. Q. Wang, Y. P. Wu, Y. L. Lu, and H. F. Zhang, “Preparation and properties of isobutyleneisoprene rubber (IIR)/clay nanocomposites,” Polym. Test., 24, 12-17 (2005).

    Article  Google Scholar 

  9. J. Fisher, “Effect of gamma radiation on ethylene vinyl acetate copolymers.” 27th SPE ANTEC, 556-566 (1969).

  10. J. Sharif, K. Z. M. Dahlan, and W. M. Z. W. Yunus, “Electron beam crosslinking of poly(ethylene-co-vinyl acetate)/clay nanocomposites,” Radiat. Phys. Chem., 76, 1698-1702 (2007).

    Article  Google Scholar 

  11. Z. Z. Wang, Y. Hu, Z. Gui, an R. W. Zong, “Halogen-free flame retardation and silane crosslinking of polyethylenes,” Polym. Test. 22, 533-538 (2003).

  12. C. K. Radhakrishnan, A. Sujith, G. Unnikrishnan, and T. Sabu, “Effects of the blend ratio and crosslinking systems on the curing behavior, morphology, and mechanical properties of styrene–butadiene rubber/poly(ethylene-covinyl acetate) blends,” J. Appl. Polym. Sci. 94, 827-837 (2004).

    Article  Google Scholar 

  13. C. M. Jiao, Z. Z. Wang, B. Y. Yu, and Y. Hu, “Irradiation crosslinking and halogen-free flame retardation of EVA using hydrotalcite and red phosphorus,” Radiat. Phys. Chem., 75, 557-563 (2006).

    Article  Google Scholar 

  14. H. Liu, Z. P. Fang, M. Peng, L. Shen, and Y. C. Wang, “The effects of irradiation cross-linking on the thermal degradation and flame-retardant properties of the HDPE/EVA/magnesium hydroxide composites,” Radiat. Phys. Chem., 78, 922-926 (2009).

    Article  Google Scholar 

  15. Y. W. Hu, Q. H. Wu, and B. J. Qu, “Photocrosslinking of EVA/inorganic filler blends and characteristics of related properties,” Polym. Adv. Technol. 21, 177-182 (2010).

    Google Scholar 

  16. K. Y. Lee, K. Y. Kim, I. R. Hwang, Y. S. Choi, and C. H. Hong, “Thermal, tensile and morphological properties of gamma-ray irradiated epoxy-clay nanocomposites toughened with a liquid rubber,” Polym. Test., 29, No. 1, 139 (2010).

  17. M. T. Sultan, M. A. Rahman, J. M. M. Islam, M. A. Khan, N. Rahman, Noor-A-Alam, A. K. M. A. Hakim, and M. Muhibul Alam, “Preparation and characterization of an alginate/clay nano-composite for optoelectronic application,” Adv. Mat. Res., 123-125, 751-775 (2010).

  18. J. Cuppoletta, Nanocomposites and Polymers with Analytical Methods, InTech, Rijeka, Croatia ( 2011).

    Book  Google Scholar 

  19. E. Papa and A. Corigliano, “Mechanical behaviour of a syntactic foam/glass fibre composite sandwich: experimental results,” Struct. Eng. Mech., 12, 169-188 (2001).

    Article  Google Scholar 

  20. ASTM, D638-03. , Standard Test Method for Tensile Properties of Plastics, Association for Standard Testing of Materials, West Conshohocken, PA. (2003).

  21. K. T. Gam, M. Miyamoto, R. N.ishimura, and H. J. Sue, “Fracture behavior of core-shell rubber-modified clay -epoxy nanocomposites,” Polym. Eng. Sci., 43, 1635-1645 (2003).

  22. S. T. Lim, Y. H. Hyun, H. J. Choi, and M. S. Jhon, “Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites,” Chem. Mater., 14, 1839-44 (2002).

    Article  Google Scholar 

  23. E. Manias and H. Chen, “Intercalation kinetics of long polymer in 2-nm confinements,” Macromol., 33, 7955-7966 (2000).

    Article  Google Scholar 

  24. H. Shi, T. Lan, and T J. Pinnavaia, “Interfacial effects on the reinforcement properties of polymer- organo clay nanocomposites,” Chem. Mater., 8, 1584-1591(1996).

  25. Q. Chen, R. Xu, and D. Yu, “Preparation of nanocomposites of thermosetting resin from benzoxazine and bisoxazoline with montmorillonite,” J. Appl. Polym. Sci., 100, 4741-4747 (2006).

    Article  Google Scholar 

  26. T. P. Mohan, M. Ramesh Kumar, and R. Velmurugan, “Thermal, mechanical and vibration characteristics of epoxy-clay nanocomposites,” J. Mater. Sci., 41, 5915-5925 (2006).

    Article  Google Scholar 

  27. M. Gholami and G. M. Sadeghi, “Investigating the effects of chemical modification of clay nanoparticles on thermal Degradation and mechanical properties of TPU/nanoclay composites,” J. J. Particle Sci. Tec., 1-11 (2015).

  28. G. S. Sur, H. L. Sun, S. G. Lyu, and J. E. Mark, “Synthesis, structure, mechanical properties, and thermal stability of some polysulfone/organoclaynanocomposites,” Polymer, 42, 9783-9789 (2001).

    Article  Google Scholar 

  29. H. Hongwei, L. Kaixi, J. Wang, G. Sun, Y. Li, and J. Wang, “Study on thermal and mechanical properties of nanocalcium carbonate/epoxy,” Composites, Mater. Des., 32, 4521-4527 (2011).

  30. J. Ritu, A. K.Narula, and V. Choudhary, “Studies on epoxy/calcium carbonate nanocomposites,” J. Appl. Polym. Sci., 114, 2161-2168 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Qaemshahr Branch, Islamic Azad University, Iran for its financial support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shokuhi Rad.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 53, No. 3, pp. 531-542 , May-June, 2017.

An erratum to this article is available at https://doi.org/10.1007/s11029-017-9686-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokuhi Rad, A., Ebrahimi, D. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation. Mech Compos Mater 53, 373–380 (2017). https://doi.org/10.1007/s11029-017-9668-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-017-9668-6

Keywords

Navigation