Skip to main content
Log in

A mesomechanical analysis of short-fiberreinforced composites with account of the interphase layer

  • Published:
Mechanics of Composite Materials Aims and scope

A mechanical-mathematical model allowing one to calculate the effective elastic characteristics of a composite filled with short fibers and containing an interphase layer is developed. The model is based on Eshelby’s principle and the technique of a “composite” inclusion. Relationships for the effective Young’s modulus of a composite randomly reinforced with short fibers as a function of volume fraction of the filler and interphase layer, as well as of the parameter of anisometry of inclusions, are obtained. For testing the model developed, the elastic characteristics of a composite reinforced with infinite fibers are found. A good agreement with results obtained by using an alternative technique is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. A. Lurie, P. Belov, D. Volkov-Bogorodsky, and N. Tuchkova, “Interphase layer theory and application in the mechanics of composite materials,” J. Mater. Sci., 41, No. 20, 140-152 (2006).

    Article  Google Scholar 

  2. O. K. Garishin and S. N. Lebedev, “Investigation of structural stresses in dispersedly filled elastomeric nanocomposites,” Mech. Kompoz. Mater. Strukt., 12, No. 3, 289-299 (2006).

    CAS  Google Scholar 

  3. G. V. Kozlov, Yu. G. Yanovskii, and Yu. S. Lipatov, “Fractal analysis of the structure and properties of interphase layers in dispersedly filled polymeric composites,” Mech. Kompoz. Mater. Strukt., 8, No. 1, 111-149 (2002).

    Google Scholar 

  4. V. U. Novikov and G. V. Kozlov, “Fractal parametrization of the structure of filled polymers,” Mech. Compos. Mater., 35, No. 3, 185-200 (1999).

    Article  CAS  Google Scholar 

  5. G. V. Kozlov, A. I. Burya, and Yu. S. Lipatov, “A fractal model of reinforcement of elastoplastic nanocomposites,” Mech. Compos. Mater., 42, No. 6, 555-558 (2006).

    Article  CAS  Google Scholar 

  6. O. Yu. Buryan and V. U. Novikov, “Modeling of an interphase layer in composites with a polymeric matrix. Determination of its structure and mechanical properties,” Mech. Compos. Mater., 38, No. 3, 187-198 (2002).

    Article  CAS  Google Scholar 

  7. D. A. Chernous, S. V. Shil’ko, and S. V. Panin, “An analysis of the mechanical behavior of dispersedly reinforced nanocomposites. Calculation method for effective elastic characteristics,” Fiz. Mezomekh., 13, No. 4, 85-90 (2010).

    Google Scholar 

  8. S. V. Shil’ko, D. A. Chernous, and S. V. Panin, “An analysis of the mechanical behavior of dispersedly reinforced nanocomposites. Estimation of the local strength of inclusion, interphase layer, and near-surface volume of the matrix,” Fiz. Mezomekh., 14, No. 1, 67-73 (2011).

    Google Scholar 

  9. Yu. S. Lipatov, V. F. Babich, and L. N. Perepelitsina, “Computational-theoretical estimation of the effect of boundary layers of binder on the viscoelastic properties of a composite material,” Vysokomol. Soed., 24B, No. 7, 548-553 (1982).

    Google Scholar 

  10. Yu. K. Mashkov, Z. N. Ovchar, V. I. Surikov, and L. F. Kalistratov, Composite Materials Based on Polytetrafluoroethylene. Structural Modification [in Russian], Mashinostroenie, Moscow (2005).

    Google Scholar 

  11. R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York–Chichester–Brisbane–Toronto (1979).

    Google Scholar 

  12. J. D. Eshelby, Continuum Theory of Dislocations [Russian translation], Inostrannaya Literatura (1963).

    Google Scholar 

  13. E. Plume, R. D. Maksimov, and A. Lagzdins, “Effect of anisometry of a platelike nanofiller on the elastic constants of a transversely isotropic composite,” Mech. Compos. Mater., 44, No. 4, 341-348 (2008).

    Article  CAS  Google Scholar 

  14. A. Lagzdins, R. D. Maksimov, and E. Plume, “Anisotropy of elasticity of a composite with irregularly oriented anisometric filler particles,” Mech. Compos. Mater., 45, No. 4, 345-358 (2009).

    Article  Google Scholar 

  15. R. D. Maksimov, J. Bitenieks, E. Plume, J. Zicans, and R. Merijs Meri, “The effect of introduction of carbon nanotubes on the physicomechanical properties of polyvinylacetate,” Mech. Compos. Mater., 46, No. 3, 237-250 (2010).

    Article  CAS  Google Scholar 

  16. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. Roy. Soc. Ser. A, 241, 376-396 (1957).

    Article  Google Scholar 

  17. T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metallurgica, 21, No. 5, 571-574 (1973).

    Article  Google Scholar 

  18. A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Rigid Polymer Materials [in Russian], Zinatne, Riga (1972).

    Google Scholar 

Download references

Acknowledgments

This study was performed on the instruction 1.06 GKPNI “Mechanics” and of projects of the Belarus Republican Fund for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shil’ko.

Additional information

Dedicated to A. Malmeister’s 100th birhday

Translated from Mekhanika Kompozitnykh Materialov, Vol. 48, No. 2, pp. 249-260 , March-April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shil’ko, S.V., Chernous, D.A. & Panin, S.V. A mesomechanical analysis of short-fiberreinforced composites with account of the interphase layer. Mech Compos Mater 48, 171–178 (2012). https://doi.org/10.1007/s11029-012-9263-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-012-9263-9

Keywords

Navigation