Skip to main content
Log in

A limit surface formulation for plastically compressible polymers

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The tightening of industrial safety standards for structures generates a need for refined computational methods, which, among other things, must be able to describe the yield surface and the deformation behaviour of non-reinforced thermoplastics. To describe the plastic behaviour of materials, a potential formulation is suggested. This formulation contains a number of known potentials as special cases. The parameters of the model, which are obtained from test data, are restricted by the convexity condition for the potential. The new model allows one to take into account effects of the second order, for instance, the unequal behaviour under tension and compression, the plastic compressibility, and the Poynting-Swift effect. For each particular choice of the parameters, the Poisson ratio in tension is computed. If the restrictions imposed on the Poisson ratio do not hold, the application of a non-associated flow rule is necessary. A simple non-associated flow rule with different values of Poisson ratio intension and compression is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Altenbach, J. Altenbach and A. Zolochevsky, Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik, Deutscher Verlag für Grundstoffindustrie, Stuttgart (1995).

    Google Scholar 

  2. G. Backhaus, Deformationsgesetze, Akademie Verlag, Berlin (1983).

    Google Scholar 

  3. M. Życzkowski, Combined Loadings in the Theory of Plasticity, PWN-Polish Scientific Publishers (1981).

  4. R. Bardenheier, Mechanisches Versagen von Polymerwerkstoffen: Anstrengungsbewertung mehrachsialer Spannungszustände, Hanser Verlag, München (1982).

    Google Scholar 

  5. J. Betten, Creep Mechanics, Springer, Berlin (2005).

    Google Scholar 

  6. Yu. I. Yagn, “New methods of material strength computation,” Vestn. Inzh. Tekh., 6, 237–244 (1931).

    Google Scholar 

  7. V. A. Kolupaev, Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten, Diss., Martin-Luther Universität Halle-Wittenberg, Papierflieger Verlag, Clausthal-Zellerfeld (2006).

    Google Scholar 

  8. M. Sayir, “Zur Fließbedingung der Plastizitätstheorie,” Ing. Arch., 39 414–432 (1970).

    Article  Google Scholar 

  9. S. Voesik, Handbook on the Strength of Materials [in Russian], Budivelnik Kiev (1970).

  10. V. A. Kolupaev, A. Kraatz, M. Moneke, and A. Bolchoun, “Beschreibung der mehraxialen Kriechphänomene bei Hartschaumstoffen,” Kautsch., Gummi, Kunststoffe, KGK 1-2, 17–27 (2006).

  11. V. A. Kolupaev, M. Moneke, M. Rudschuck, and F. Becker, “Modellierung des mehraxialen Grenzverhaltens von Keramiken,” in: W. Krenkel, cfi Ceramic forum international, Sonderausgabe zum DKG-DGM Symposium Hochleistungskeramik und der DKG-Jahrestagung, 12–13 Oktober 2005, Göller Verlag, Baden-Baden (2005), pp. 150–153.

    Google Scholar 

  12. S. Kolling, A. Haufe, M. Feucht, and P. Du Bois, “SAMP-1: A semi-analytical model for the simulation of polymers,” in: 4. LS-DYNA Anwenderforum 20.–21. Oktober 2005, Bamberg (2005), pp. A-II-27–A-II-52.

  13. S. Kolling and A. Haufe, “A constitutive model for thermoplastic materials subjected to high strain rates,” in: Proc. Appl. Math. Mech., 5, 303–304 (2005).

    Article  Google Scholar 

  14. A. Föppl and L. Föppl, Drang und Zwang: Eine höhere Festigkeitslehre für Ingenieure, R. Oldenbourg Verlag, München, Berlin (1920), p. 50.

    Google Scholar 

  15. V. A. Kolupaev, M. Moneke, and F. Becker, Mehraxiales Kriechen von Thermoplast-Formteilen, VDI-Verlag, Düsseldorf (2005).

    Google Scholar 

  16. H. Altenbach, P. Schieße, and A. Zolochevsky, “Zum Kriechen isotroper Werkstoffe mit komplizierten Eigenschaften,” Rheol. Acta, 30, 388–399 (1991).

    Article  Google Scholar 

  17. H. Altenbach, A. Bolchun, and V. A. Kolupaev, “Models for spatial mechanical behaviour of non-reinforced thermoplastics,” in: W. Grellmann, Hrsg., 11 Tagung Deformations und Bruchverhalten von kunststoffen, 20–22 Juni 2007, Martin-Luther-Univesität, Merseburg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 3, pp. 367–384, May–June, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolupaev, V.A., Kolling, S., Bolchoun, A. et al. A limit surface formulation for plastically compressible polymers. Mech Compos Mater 43, 245–258 (2007). https://doi.org/10.1007/s11029-007-0024-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-007-0024-0

Keywords

Navigation