Skip to main content
Log in

Nonlinear oscillations and bifurcations of a multistable truss and dynamic integrity assessment via a Monte Carlo approach

  • Recent Advances in Nonlinear Dynamics and Vibrations
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present work, a truss model inspired by von Mises and Bergan trusses is considered. The resulting structure is a phenomenological model that represents the behavior of many engineering structures and may exhibit in-plane snap-through or pitchfork unstable bifurcation and/or lateral buckling, leading two a multiwell potential function. The topology of the resulting potential function generates a complex bifurcation scenario under harmonic forcing with multiple attractors. The first aim of this work is to investigate the nonlinear vibrations of the proposed model. The interaction of the bifurcation phenomena leads to motions in two-, four- and six-dimensional phase-space. The use of different integrity measures is essential for assessing the robustness of the driven structure to unpredictable finite disturbances of a both static and dynamic nature in such cases. However of the various numerical tools for global dynamic analysis, few are well suited for higher-dimensional systems. In particular the evaluation of integrity measures of multidimensional system requires significant computational resources, being a rather time-consuming procedure. Thus the second aim of the paper is to propose numerical methodologies for evaluating the dynamic integrity measures of multidimensional systems by a Monte Carlo approach. Dynamic integrity analysis of the resulting multidimensional system is performed using three integrity measures, global and local integrity measures (GIM and LIM, respectively) and the integrity factor. Three algorithms based on the Monte Carlo method are proposed to estimate these measures by means of sampling initial conditions. We demonstrate that the proposed approach has a major advantage in comparison to classical methods, since basins of attraction are not needed. Computationally expensive procedures, such as simple cell mapping, are not required. Therefore, the proposed approach has the potential to estimative the dynamic integrity of high dimensional systems with less computational effort, as shown by the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Augenti N, Parisi F (2013) Buckling analysis of a long-span roof structure collapsed during construction. J Perform Constr Facil 27:77–88. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000302

    Article  Google Scholar 

  2. Bazzucchi F, Manuello A, Carpinteri A (2016) Interaction between different instability phenomena in shallow roofing structures affected by geometrical imperfections. Proc IASS Annu Symp 2016:1–10

    Google Scholar 

  3. Santana MVB, Gonçalves PB, Silveira RAM (2019) Stability and load capacity of an elasto-plastic pyramidal truss. Int J Solids Struct 171:158–173. https://doi.org/10.1016/j.ijsolstr.2019.04.011

    Article  Google Scholar 

  4. Pirrera A, Avitabile D, Weaver PM (2010) Bistable plates for morphing structures: a refined analytical approach with high-order polynomials. Int J Solids Struct 47:3412–3425. https://doi.org/10.1016/J.IJSOLSTR.2010.08.019

    Article  MATH  Google Scholar 

  5. Pellegrino S (2001) Deployable structures. Springer, Vienna

    Book  Google Scholar 

  6. Santana MVB (2019) Tailored corotational formulations for the nonlinear static and dynamic analysis of bistable Structures. Pontifical Catholic University of Rio de Janeiro & Université Libre de Bruxelles

  7. Yan B, Zhou S, Litak G (2018) Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement. Int J Bifurc Chaos 28:1850092. https://doi.org/10.1142/S021812741850092X

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang C, Zhang Q, Wang W, Feng J (2018) A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mech Syst Signal Process 112:305–318. https://doi.org/10.1016/j.ymssp.2018.04.027

    Article  Google Scholar 

  9. Paulose J, Meeussen AS, Vitelli V (2015) Selective buckling via states of self-stress in topological metamaterials. Proc Natl Acad Sci 112:7639–7644. https://doi.org/10.1073/pnas.1502939112

    Article  Google Scholar 

  10. Yasuda H, Yang J (2015) Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys Rev Lett 114:185502. https://doi.org/10.1103/PhysRevLett.114.185502

    Article  Google Scholar 

  11. Mises RV (1923) Über die stabilitätsprobleme der elastizitätstheorie. ZAMM—Zeitschrift Angew Math Mech 3:406–422. https://doi.org/10.1002/zamm.19230030602

    Article  MATH  Google Scholar 

  12. Mises RV, Ratzersdorfer J (1925) Die Knicksicherheit von Fachwerken. ZAMM—Zeitschrift Angew Math Mech 5:218–235. https://doi.org/10.1002/zamm.19250050305

    Article  MATH  Google Scholar 

  13. Bergan PG (1980) Solution algorithms for nonlinear structural problems. Comput Struct 12:497–509. https://doi.org/10.1016/0045-7949(80)90125-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Orlando D, de Castro CHL, Gonçalves PB (2018) Nonlinear vibrations and instability of a bistable shallow reticulated truss. Nonlinear Dyn 94:1479–1499. https://doi.org/10.1007/s11071-018-4437-1

    Article  Google Scholar 

  15. Orlando D, Gonçalves PB, Rega G, Lenci S (2019) Influence of transient escape and added load noise on the dynamic integrity of multistable systems. Int J Non Linear Mech 109:140–154. https://doi.org/10.1016/j.ijnonlinmec.2018.12.001

    Article  Google Scholar 

  16. Santana MVB, Gonçalves PB, Silveira RAM (2019) Nonlinear oscillations and dynamic stability of an elastoplastic pyramidal truss. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-05072-9

    Article  MATH  Google Scholar 

  17. Iwicki P (2010) Sensitivity analysis of critical forces of trusses with side bracing. J Constr Steel Res 66:923–930. https://doi.org/10.1016/j.jcsr.2010.02.004

    Article  Google Scholar 

  18. Jankowska-Sandberg J, Kołodziej J (2013) Experimental study of steel truss lateral–torsional buckling. Eng Struct 46:165–172. https://doi.org/10.1016/j.engstruct.2012.07.033

    Article  Google Scholar 

  19. Guo Y, Zhao S-Y, Dou C (2014) Out-of-plane elastic buckling behavior of hinged planar truss arch with lateral bracings. J Constr Steel Res 95:290–299. https://doi.org/10.1016/j.jcsr.2013.12.013

    Article  Google Scholar 

  20. Pignataro M, Luongo A (1994) Interactive buckling of an elastically restrained truss structure. Thin-Walled Struct 19:197–210

    Article  Google Scholar 

  21. Thompson JMT (1989) Chaotic phenomena triggering the escape from a potential well. Proc R Soc A Math Phys Eng Sci 421:195–225. https://doi.org/10.1098/rspa.1989.0009

    Article  MathSciNet  MATH  Google Scholar 

  22. Soliman MS, Thompson JMT (1989) Integrity measures quantifying the erosion of smooth and fractal basins of attraction. J Sound Vib 135:453–475. https://doi.org/10.1016/0022-460X(89)90699-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Thompson JMT, Soliman MS (1990) Fractal control boundaries of driven oscillators and their relevance to safe engineering design. Proc R Soc A Math Phys Eng Sci 428:1–13. https://doi.org/10.1098/rspa.1990.0022

    Article  MATH  Google Scholar 

  24. Lenci S, Rega G, Ruzziconi L (2013) The dynamical integrity concept for interpreting/predicting experimental behaviour: from macro- to nano-mechanics. Philos Trans R Soc A Math Phys Eng Sci 371:1–19. https://doi.org/10.1098/rsta.2012.0423

    Article  MATH  Google Scholar 

  25. Rega G, Lenci S (2005) Identifying, evaluating, and controlling dynamical integrity measures in non-linear mechanical oscillators. Nonlinear Anal Theory Methods Appl 63:902–914. https://doi.org/10.1016/j.na.2005.01.084

    Article  MathSciNet  MATH  Google Scholar 

  26. Rega G, Lenci S (2008) Dynamical integrity and control of nonlinear mechanical oscillators. J Vib Control 14:159–179. https://doi.org/10.1177/1077546307079403

    Article  MATH  Google Scholar 

  27. Belardinelli P, Lenci S, Rega G (2018) Seamless variation of isometric and anisometric dynamical integrity measures in basins’s erosion. Commun Nonlinear Sci Numer Simul 56:499–507. https://doi.org/10.1016/j.cnsns.2017.08.030

    Article  MathSciNet  MATH  Google Scholar 

  28. Kloda L, Lenci S, Warminski J (2018) Nonlinear dynamics of a planar beam–spring system: analytical and numerical approaches. Nonlinear Dyn 94:1721–1738. https://doi.org/10.1007/s11071-018-4452-2

    Article  Google Scholar 

  29. Thompson JMT (2019) Dynamical integrity: three decades of progress from macro to nanomechanics. In: Lenci S, Rega G (eds) Global nonlinear dynamics for engineering design and system safety. CISM international centre for mechanical sciences, vol 588. Springer, Cham, pp 1–26

    Chapter  Google Scholar 

  30. Rega G, Lenci S (2015) A Global dynamics perspective for system safety from macro- to nanomechanics: analysis, control, and design engineering. Appl Mech Rev 67:050802. https://doi.org/10.1115/1.4031705

    Article  Google Scholar 

  31. Gonçalves PB, Del Prado ZJGN (2002) Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica 37:569–597. https://doi.org/10.1023/A:1020972109600

    Article  MATH  Google Scholar 

  32. Gonçalves PB, da Silva FMA, Del Prado ZJGN (2007) Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dyn 50:121–145. https://doi.org/10.1007/s11071-006-9147-4

    Article  MathSciNet  MATH  Google Scholar 

  33. da Silva FMA, Gonçalves PB, Del Prado ZJGN (2011) An alternative procedure for the non-linear vibration analysis of fluid-filled cylindrical shells. Nonlinear Dyn 66:303–333. https://doi.org/10.1007/s11071-011-0037-z

    Article  MathSciNet  Google Scholar 

  34. Gonçalves PB, da Silva FMA, Rega G, Lenci S (2011) Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dyn 63:61–82. https://doi.org/10.1007/s11071-010-9785-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Rodrigues L, da Silva FMA, Gonçalves PB, Del Prado ZJGN (2014) Effects of modal coupling on the dynamics of parametrically and directly excited cylindrical shells. Thin-Walled Struct 81:210–224. https://doi.org/10.1016/j.tws.2013.08.004

    Article  Google Scholar 

  36. Hsu CS, Guttalu RS (1980) An unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings. J Appl Mech 47:940–948. https://doi.org/10.1115/1.3153817

    Article  MathSciNet  MATH  Google Scholar 

  37. Hsu CS (1980) A theory of cell-to-cell mapping dynamical systems. J Appl Mech 47:931–939. https://doi.org/10.1115/1.3153816

    Article  MathSciNet  MATH  Google Scholar 

  38. Belardinelli P, Lenci S (2016) An efficient parallel implementation of cell mapping methods for MDOF systems. Nonlinear Dyn 86:2279–2290. https://doi.org/10.1007/s11071-016-2849-3

    Article  MathSciNet  MATH  Google Scholar 

  39. Belardinelli P, Lenci S (2017) Improving the global analysis of mechanical systems via parallel computation of basins of attraction. Procedia IUTAM 22:192–199. https://doi.org/10.1016/j.piutam.2017.08.028

    Article  Google Scholar 

  40. Eason RP, Dick AJ (2014) A parallelized multi-degrees-of-freedom cell mapping method. Nonlinear Dyn 77:467–479. https://doi.org/10.1007/s11071-014-1310-8

    Article  Google Scholar 

  41. Xiong F-R, Qin Z-C, Ding Q et al (2015) Parallel Cell Mapping Method For Global Analysis Of High-Dimensional Nonlinear Dynamical Systems. J Appl Mech 82:111010. https://doi.org/10.1115/1.4031149

    Article  Google Scholar 

  42. Belardinelli P, Lenci S (2016) A first parallel programming approach in basins of attraction computation. Int J Non Linear Mech 80:76–81. https://doi.org/10.1016/j.ijnonlinmec.2015.10.016

    Article  Google Scholar 

  43. Zhang Y, Zhang H (2015) Metamorphoses of basin boundaries with complex topology in an archetypal oscillator. Nonlinear Dyn 79:2309–2323. https://doi.org/10.1007/s11071-014-1813-3

    Article  MathSciNet  Google Scholar 

  44. Armiyoon AR, Wu CQ (2015) A novel method to identify boundaries of basins of attraction in a dynamical system using Lyapunov exponents and Monte Carlo techniques. Nonlinear Dyn 79:275–293. https://doi.org/10.1007/s11071-014-1663-z

    Article  MathSciNet  Google Scholar 

  45. Del Prado ZJGN (2001) Acoplamento e Interação Modal na Instabilidade Dinâmica de Cascas Cilíndricas. Pontifícia Universidade Católica do Rio de Janeiro

  46. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341. https://doi.org/10.2307/2280232

    Article  MATH  Google Scholar 

  47. Schultz P, Menck PJ, Heitzig J, Kurths J (2017) Potentials and limits to basin stability estimation. New J Phys 19:023005. https://doi.org/10.1088/1367-2630/aa5a7b

    Article  Google Scholar 

  48. Benedetti KCB, da Silva FMA, Goncalves PB (2017) Computational improvement in the evaluation of dynamic integrity with Monte Carlo method. In: Procceedings of the 24th ABCM international congress of mechanical engineering. ABCM, Curitiba, PR

  49. Brzeski P, Belardinelli P, Lenci S, Perlikowski P (2018) Revealing compactness of basins of attraction of multi-DoF dynamical systems. Mech Syst Signal Process 111:348–361. https://doi.org/10.1016/j.ymssp.2018.04.005

    Article  Google Scholar 

  50. Brzeski P, Lazarek M, Kapitaniak T et al (2016) Basin stability approach for quantifying responses of multistable systems with parameters mismatch. Meccanica 51:2713–2726. https://doi.org/10.1007/s11012-016-0534-8

    Article  MathSciNet  Google Scholar 

  51. Brzeski P, Perlikowski P (2018) Sample-based methods of analysis for multistable dynamical systems. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-018-9280-5

    Article  Google Scholar 

  52. Ligarò S, Valvo P (2006) Large displacement analysis of elastic pyramidal trusses. Int J Solids Struct 43:4867–4887. https://doi.org/10.1016/j.ijsolstr.2005.06.100

    Article  MATH  Google Scholar 

  53. Seydel R (2010) Practical bifurcation and stability analysis. Springer, New York

    Book  Google Scholar 

  54. Maximiano DP, Silveira RA, Silva AR, Gonçalves PB (2019) An efficient strategy for solving structural nonlinear equations by combining the orthogonal residual method and normal flow technique. Int J Struct Stab Dyn 19(04):1950039. https://doi.org/10.1142/S0219455419500391

    Article  MathSciNet  Google Scholar 

  55. Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics, 1st edn. Wiley, New York

    Book  Google Scholar 

  56. Orlando D, Gonçalves PB, Lenci S, Rega G (2016) Increasing practical safety of Von Mises Truss via control of dynamic escape. Appl Mech Mater 849:46–56. https://doi.org/10.4028/www.scientific.net/AMM.849.46

    Article  Google Scholar 

  57. Lenci S, Rega G (2003) Optimal control of nonregular dynamics in a duffing oscillator. Nonlinear Dyn 33:71–86. https://doi.org/10.1023/A:1025509014101

    Article  MathSciNet  MATH  Google Scholar 

  58. Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer, New York

    Book  Google Scholar 

  59. Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo methods. Wiley, Hoboken

    Book  Google Scholar 

  60. Shreider YA (1966) Principles of the Monte Carlo method. In: Shreider YA (ed) the Monte Carlo method, 2nd edn. Elsevier, Amsterdam, pp 1–90

    Google Scholar 

  61. Rubino G, Tuffin B (2009) Rare event simulation using Monte Carlo methods. Wiley, Chichester

    Book  Google Scholar 

  62. Rubinstein RY, Kroese DP (2016) Simulation and the Monte Carlo method. Wiley, Hoboken

    Book  Google Scholar 

  63. Xiong F-R, Han Q, Hong L, Sun J-Q (2019) Global analysis of nonlinear dynamical Systems. In: Lenci S, Rega G (eds) Global nonlinear dynamics for engineering design and system safety. CISM international centre for mechanical sciences, vol 588. Springer, Cham, pp 287–318

    Chapter  Google Scholar 

  64. Sun J-Q, Xiong F-R, Schütze O, Hernández C (2019) Simple cell mapping. In: Sun J-Q, Xiong F-R, Schütze O, Hernández C (eds) Cell mapping methods. Springer, Singapore, pp 29–43

    Chapter  Google Scholar 

  65. Chan TF, Golub GH, LeVeque RJ (1983) Algorithms for computing the sample variance: analysis and recommendations. Am Stat 37:242–247. https://doi.org/10.2307/2683386

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Brazilian research agencies CAPES [finance code 001, Grant No. 88882.306492/2018-01], CNPq [Grant No. 164925/2017-1, 303995/2017-3], FAPERJ-CNE [Grant No. E-26/202.858/2018], and FAPEG [Grant No. 201410267001828].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo B. Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, K.C.B., Gonçalves, P.B. & Silva, F.M.A. Nonlinear oscillations and bifurcations of a multistable truss and dynamic integrity assessment via a Monte Carlo approach. Meccanica 55, 2623–2657 (2020). https://doi.org/10.1007/s11012-020-01202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01202-5

Keywords

Navigation