Skip to main content
Log in

A parallelized multi-degrees-of-freedom cell mapping method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Cell mapping methods, in general, provide a computationally efficient way to analyze the long-term global dynamics of lower-dimensional systems. The multi-degrees-of-freedom cell mapping (MDCM) method, in particular, overcomes the scaling limitations of other cell mapping methods, allowing efficiency benefits to be realized for higher-dimensional systems. Unfortunately, the sequential structure of the MDCM algorithm limits the ability to utilize the parallel processing capabilities of modern computers. In this paper, the parallelized multi-degrees-of-freedom cell mapping (PMDCM) method is introduced. The PMDCM method features a restructured algorithm that employs parallel computation to streamline one of the most time-consuming elements: numerical integration. The PMDCM algorithm is described in detail and is demonstrated by comparing results produced by the PMDCM method to those produced by MDCM and the grid-of-starts. By using the PMDCM method on a quad-core processor with 100 simultaneous integrations per mapping step, the total computation time is reduced by 93 %, as compared with the MDCM method. With PMDCM, the global integrity measure also agrees more closely with the computationally intensive grid-of-starts method when compared with the MDCM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alasty, A., Shabani, R.: Chaotic motions and fractal basin boundaries in spring-pendulum system. Nonlinear Anal. 7(1), 81–95 (2006)

    MATH  MathSciNet  Google Scholar 

  2. Crespo, L., Sun, J.: Stochastic optimal control of nonlinear systems via short-time Gaussian approximation and cell mapping. Nonlinear Dyn. 28(3–4), 323–342 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Doedel, E.: AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congr. Numerantium 30, 265–284 (1981)

    MathSciNet  Google Scholar 

  4. Ge, Z.M., Lee, S.C.: A modified interpolated cell mapping method. J. Sound Vib. 199(2), 189–206 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gonçalves, P., Frederico, M., Rega, G., Lenci, S.: Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dyn. 63(1–2), 61–82 (2011)

    Google Scholar 

  6. Hsu, C.: Theory of cell-to-cell mapping dynamical systems. J. Appl. Mech. 47(4), 931–939 (1980)

    Google Scholar 

  7. Hsu, C.: Probabilistic theory of nonlinear dynamical systems based on the cell state space concept. J. Appl. Mech. 49(4), 895–902 (1982)

    Article  MATH  Google Scholar 

  8. Hsu, C., Guttalu, R.: Unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings. J. Appl. Mech. 47(4), 940–948 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hsu, C., Guttalu, R., Zhu, W.: Method of analyzing generalized cell mappings. J. Appl. Mech. 49(4), 885–894 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  11. Rega, G., Lenci, S.: Identifying, evaluating, and controlling dynamical integrity measures in non-linear oscillators. Nonlinear Anal. 63(5–7), 902–914 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Soliman, M., Thompson, J.: Integrity measures quantifying the erosion of smooth and fractal basins of attraction. J. Sound Vib. 135(3), 453–475 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sun, J., Luo, A.: Bifurcation and Chaos in Complex Systems (Edited Series on Advances in Nonlinear Science and Complexity), vol. 1. Elsevier, Oxford (2006)

  14. Szemplinska-Stupnicka, W., Troger, H. (eds.): Engineering Applications of Dynamics of Chaos, chap. 1, pp. 42–61. CISM Courses and Lectures No. 319. Springer Verlag, Wien-New York (1991)

  15. Tongue, B.: On obtaining global nonlinear system characteristics through interpolated cell mapping. Phys. D 28(3), 401–408 (1987)

    Article  MathSciNet  Google Scholar 

  16. Tongue, B.: A multiple-map strategy for interpolated mapping. Int. J. Non-Linear Mech. 25(2–3), 177–186 (1990)

    Article  MathSciNet  Google Scholar 

  17. Tongue, B., Gu, K.: A higher order method of interpolated cell mapping. J. Sound Vib. 125(1), 169–179 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tongue, B., Gu, K.: Interpolated cell mapping of dynamical systems. J. Appl. Mech. 55(2), 461–466 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. van Campen, D., van de Vorst, E., van der Spek, J., de Kraker, A.: Dynamics of a multi-DOF beam system with discontinuous support. Nonlinear Dyn. 8(4), 453–466 (1995)

    Article  Google Scholar 

  20. van Campen, D., de Kraker, A., Fey, R., van de Vorst, E., van der Spek, J.: Long-term dynamics of non-linear MDOF engineering systems. Chaos Solitons Fractals 8(4), 455–477 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. van der Spek, J., van Campen, D., de Kraker, A.: Cell mapping for multi degrees of freedom systems. In: Proceedings of the 1994 International Mechanical Engineering Congress and Exposition, Chicago, IL, vol. 192, pp. 151–159 (1994)

  22. van der Spek, J., de Hoon, C., de Kraker, A., van Campen, D.: Parameter variation methods for cell mapping. Nonlinear Dyn. 7(3), 273–284 (1995)

    Article  Google Scholar 

  23. Virgin, L., Begley, C.: Grazing bifurcations and basins of attraction in an impact friction oscillator. Phys. D 130(1–2), 43–57 (1999)

    Article  MATH  Google Scholar 

  24. Wiercigroch, M., Kraker, B. (eds.): Applied nonlinear dynamics and chaos of mechanical systems with discontinuities. World Scientific Series on Nonlinear Science, vol. 28, chap. 4, pp. 64–93. World Scientific, Singapore (2000)

  25. Xu, L., Lu, M., Cao, Q.: Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise linearities by incremental harmonic balance method. J. Sound Vib. 264(4), 873–882 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eason, R.P., Dick, A.J. A parallelized multi-degrees-of-freedom cell mapping method. Nonlinear Dyn 77, 467–479 (2014). https://doi.org/10.1007/s11071-014-1310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1310-8

Keywords

Navigation