Skip to main content
Log in

Influence of dimple geometry and micro-roughness orientation on performance of textured hybrid thrust pad bearing

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present study deals with numerical simulation of textured hybrid thrust pad bearing. Influence of providing micro-dimples of different cross-sectional shapes on the bearing surface has been theoretically investigated on the performance of thrust pad bearing. Reynolds equation has been solved using mass-conserving algorithm based on Jakobsson–Floberg–Olsson cavitation boundary conditions. A parametric study is carried out to optimize dimple shapes from the viewpoint of load carrying capacity of bearings. The textured bearing surface is noticed to be beneficial in reducing the frictional power losses. Providing half-section dimples (second half in the direction of runner rotation) towards the leading edge of thrust pad, enhance the load carrying capacity and fluid film stiffness coefficient of bearings. Micro-roughness in a textured surface having transverse orientation is seen to improve the dynamic characteristics of hybrid thrust pad bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A_{b}\) :

Area of bearing \((\pi r_{o}^{2} )\) (mm2)

\(A_{p}\) :

Area of 1/32th thrust pad surface \(\left( {\frac{\pi }{32}\left( {r_{o}^{2} - r_{i}^{2} } \right)} \right)\) (mm2)

\(A_{t}\) :

Area of dimples/textures \((N_{d} *\pi r_{d}^{2} )\) (mm2)

\(A_{oc}\) :

Area of recess \((\pi r_{i}^{2} )\) (mm2)

\(A_{d}\) :

Area density of texture \(\left( {A_{d} = \frac{{A_{t} }}{{A_{p} }}} \right)\)

\(\bar{A}_{r}\) :

Bearing to recess area ratio \((A_{b} /A_{oc} )\)

\(C\) :

Damping coefficient of fluid film (N s/m) \(\left( {\bar{C} = \frac{{h_{o}^{3} }}{{r_{o}^{4} \mu }}C} \right)\)

\(h_{d}\) :

Depth of micro-dimples (µm) \(\left( {\bar{h}_{d} = h_{d} /h_{o} } \right)\)

\(F_{o}\) :

Fluid film reaction (N) \(\bar{F}_{o} = \left( {\frac{{F_{o} }}{{p_{s} r_{o}^{2} }}} \right)\)

h :

Lubricant film thickness (mm) \(\left( {\bar{h} = h/h_{o} } \right)\)

\(\dot{h}\) :

Squeeze velocity, (mm/s) \(\left( {\overline{{\dot{h}}} = \frac{{\partial \bar{h}}}{{\partial \bar{t}}}} \right)\)

\(h_{o}\) :

Reference film thickness (mm)

\(h_{T}\) :

Average film thickness for rough surfaces (mm) \(\left( {\bar{h}_{T} = h_{T} /h_{o} } \right)\)

\(L_{t}\) :

Length of groove \(\left( {L_{t} = n_{d} *S_{p} } \right)\) (mm) \(\left( {\bar{L}_{t} = \frac{{L_{t} }}{{r_{o} }}} \right)\)

\(N_{d}\) :

Number of micro-dimples \(\left( {N_{d} = 1{-}6} \right)\)

\(n_{\theta } * n_{r}\) :

Number of nodes along circumferential and radial directions

p :

Fluid film pressure (MPa) \(\left( {\bar{p} = \frac{{p - p_{c} }}{{p_{s} }}} \right)\)

\(p_{oc}\) :

Pocket pressure \(\left( {\partial h/\partial t = 0} \right)\) (MPa) \(\left( {\bar{p}_{oc} = p_{oc} /p_{s} } \right)\)

\(p_{c}\) :

Cavitation pressure (Pa)

\(p_{f}\) :

Fluid film frictional power loss (Nm/s) \(\left( {\bar{p}_{fric} = \frac{{p_{f} }}{{p_{s} h_{o} \omega r_{o}^{2} }}} \right)\)

\(p_{s}\) :

Supply pressure (MPa)

Q :

Bearing flow (mm3/s)

\(Q_{R}\) :

Restrictor flow (mm3/s) \(\left( {\bar{Q}_{R} = \frac{12\mu }{{p_{s} h_{o}^{3} }}Q_{R} } \right)\)

\(r_{d}\) :

Dimple radius (µm) \(\left( {\bar{r}_{d} = \frac{{r_{d} }}{{r_{o} }}} \right)\)

\(r_{i}\) :

Recess radius (mm)

\(r_{o}\) :

Outer radius of thrust pad (mm)

\(S_{p}\) :

Radial pitch between dimples \(\left\{ {\frac{{r_{o} - r_{i} }}{{\left( {N_{d} + 1} \right)}}} \right\}\) (mm) \(\left( {\bar{S}_{p} = \frac{{S_{p} }}{{r_{o} }}} \right)\)

S :

Stiffness coefficient of fluid film (N/mm) \(\left( {\bar{S} = \frac{{h_{o} }}{{p_{s} r_{o}^{2} }}S} \right)\)

u, w :

Fluid velocity along x and z direction (m/s)

U, W :

Velocity component of runner pad along x and z direction (m/s)

x, y, z:

Cartesian coordinates \(\left( {\bar{x} = \frac{x}{{r_{o} }};\bar{z} = \frac{z}{{r_{o} }};\bar{y} = \frac{y}{{h_{o} }}} \right)\)

\(x_{l} , z_{l}\) :

Local co-ordinates of micro-dimples (mm) \(\left( {\bar{x}_{l} = \frac{{x_{l} }}{{r_{d} }};\bar{z}_{l} = \frac{{z_{l} }}{{r_{d} }}} \right)\)

\(\rho_{c}\) :

Effective density of Lubricant in cavitation zone (kg/m3)

\(\sigma\) :

Composite surface roughness (RMS) of thrust pad and runner surface (µm)

\(\omega\) :

Angular velocity of runner (rad/s)

\(\theta_{p}\) :

Angle of 1/32th model of thrust pad

\(\phi_{x} , \phi_{z}\) :

Pressure flow factor along x and z direction

\(\Lambda\) :

Film thickness parameter \(\left( {\Lambda = \frac{{h_{o} }}{\sigma }} \right)\)

\(\upgamma\) :

Micro-roughness orientation parameter

References

  1. Dowson D (1962) A generalized Reynolds equation for fluid-film lubrication. Int J Mech Sci 4(2):159–170

    Article  Google Scholar 

  2. Rowe WB (1984) Hydrostatic and hybrid bearing design. Tribol Int 17(6):353

    Article  Google Scholar 

  3. Sinhasan R, Jain SC (1984) Lubrication of orifice-compensated flexible thrust pad bearings. Tribol Int 17(4):215–221

    Article  Google Scholar 

  4. Osman T, Dorid M, Safar Z, Mokhtar M (1996) Experimental assessment of hydrostatic thrust bearing performance. Tribol Int 29(3):233–239

    Article  Google Scholar 

  5. Sharma SC, Jain SC, Bharuka DK (2002) Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing. Tribol Int 35(6):347–356

    Article  Google Scholar 

  6. Kumar V, Sharma SC (2017) Combined influence of couple stress lubricant, recess geometry and method of compensation on the performance of hydrostatic circular thrust pad bearing. Proc Inst Mech Eng Part J J Eng Tribol 231(6):716–733

    Article  Google Scholar 

  7. Kumar V, Sharma SC (2018) Finite element method analysis of hydrostatic thrust pad bearings operating with electrically conducting lubricant. Proc Inst Mech Eng Part J J Eng Tribol 232(10):1318–1331

    Article  Google Scholar 

  8. Charki A, Diop K, Champmartin S, Ambari A (2013) Numerical simulation and experimental study of thrust air bearings with multiple orifices. Int J Mech Sci 72:28–38

    Article  Google Scholar 

  9. Kumar V, Sharma SC (2018) Dynamic characteristics of compensated hydrostatic thrust pad bearing subjected to external transverse magnetic field. Acta Mech 229(3):1251–1274

    Article  MathSciNet  Google Scholar 

  10. Coblas DG, Fatu A, Maoui A, Hajjam M (2015) Manufacturing textured surfaces: state of art and recent developments. Proc Inst Mech Eng Part J J Eng Tribol 229(1):3–29

    Article  Google Scholar 

  11. Yang H, Ratchev S, Turitto M, Segal J (2009) Rapid manufacturing of non-assembly complex micro-devices by microstereolithography. Tsinghua Sci Technol 14:164–167

    Article  Google Scholar 

  12. Etsion I (2005) State of the art in laser surface texturing. Trans ASME-F-J Tribol 127(1):248

    Article  Google Scholar 

  13. Li J, Zhou F, Wang X (2011) Modify the friction between steel ball and PDMS disk under water lubrication by surface texturing. Meccanica 46(3):499–507

    Article  Google Scholar 

  14. Etsion I, Halperin G, Greenberg Y (1997) Increasing mechanical seal life with laser-textured seal faces. In: 15th international conference on fluid sealing BHR group, Maastricht, The Netherlands, pp 3–11

  15. Etsion I, Sher E (2009) Improving fuel efficiency with laser surface textured piston rings. Tribol Int 42(4):542–547

    Article  Google Scholar 

  16. Ronen A, Etsion I, Kligerman Y (2001) Friction-reducing surface-texturing in reciprocating automotive components. Tribol Trans 44(3):359–366

    Article  Google Scholar 

  17. Brizmer V, Kligerman Y, Etsion I (2003) A laser surface textured parallel thrust bearing. Tribol Trans 46(3):397–403

    Article  Google Scholar 

  18. Rahmani R, Mirzaee I, Shirvani A, Shirvani H (2010) An analytical approach for analysis and optimisation of slider bearings with infinite width parallel textures. Tribol Int 43(8):1551–1565

    Article  Google Scholar 

  19. Tauviqirrahman M, Ismail R, Jamari J, Schipper DJ (2013) A study of surface texturing and boundary slip on improving the load support of lubricated parallel sliding contacts. Acta Mech 224(2):365–381

    Article  MathSciNet  Google Scholar 

  20. Malik S, Kakoty SK (2014) Analysis of dimple textured parallel and inclined slider bearing. Proc Inst Mech Eng Part J J Eng Tribol 228(12):1343–1357

    Article  Google Scholar 

  21. Cupillard S, Cervantes MJ, Glavatskih S (2008) Pressure build up mechanism in a textured inlet of a hydrodynamic contact. J Tribol 130(2):021701

    Article  Google Scholar 

  22. Kango S, Singh D, Sharma RK (2012) Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing. Meccanica 47(2):469–482

    Article  Google Scholar 

  23. Papadopoulos CI, Efstathiou EE, Nikolakopoulos PG, Kaiktsis L (2011) Geometry optimization of textured three-dimensional micro-thrust bearings. J Tribol 133(4):041702

    Article  Google Scholar 

  24. Papadopoulos CI, Kaiktsis L, Fillon M (2014) Computational fluid dynamics thermohydrodynamic analysis of three-dimensional sector-pad thrust bearings with rectangular dimples. J Tribol 136(1):011702

    Article  Google Scholar 

  25. Jakobsson B, Floberg L (1957) The finite journal bearing considering vaporization. Transactions of Chalmers University of Technology, Guthenburg, Sweden, Report No. 190

  26. Olsson KO (1965) Cavitation in dynamically loaded bearing. Transactions of Chalmers University of Technology, Guthenburg, Sweden, Report No. 380

  27. Elrod HG, Adams M (1974) A computer program for cavitation and starvation problems. In: Proceedings of the first LEEDS-LYON symposium on cavitation and related phenomena in lubrication, Leeds, UK, pp 37–41

  28. Vijayaraghavan D, Keith T Jr (1989) Development and evaluation of a cavitation algorithm. Tribol Trans 32(2):225–233

    Article  Google Scholar 

  29. Ausas R, Ragot P, Leiva J, Jai M, Bayada G, Buscaglia GC (2007) The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. J Tribol 129(4):868–875

    Article  Google Scholar 

  30. Ausas RF, Jai M, Buscaglia GC (2009) A mass-conserving algorithm for dynamical lubrication problems with cavitation. J Tribol 131(3):031702

    Article  Google Scholar 

  31. Qiu Y, Khonsari M (2009) On the prediction of cavitation in dimples using a massconservative algorithm. J Tribol 131(4):041702

    Article  Google Scholar 

  32. Yadav SK, Sharma SC (2016) Performance of hydrostatic textured thrust bearing with supply holes operating with non-Newtonian lubricant. Tribol Trans 59(3):408–420

    Article  Google Scholar 

  33. Han Y, Fu Y (2017) Investigation of surface texture influence on hydrodynamic performance of parallel slider bearing under transient condition. Meccanica. https://doi.org/10.1007/s11012-017-0809-8

    Article  Google Scholar 

  34. Tzeng ST, Saibel E (1967) Surface roughness effect on slider bearing lubrication. ASLE Trans 10(3):334–348

    Article  Google Scholar 

  35. Christensen H (1969) Stochastic models for hydrodynamic lubrication of rough surfaces. Proc Inst Mech Eng 184(1):1013–1026

    Article  Google Scholar 

  36. Patir N, Cheng HS (1978) An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J Lubr Technol 100(1):12–17

    Article  Google Scholar 

  37. Elsharkawy AA (2001) On the hydrodynamic liquid lubrication analysis of slider/disk interface. Int J Mech Sci 43(1):177–192

    Article  Google Scholar 

  38. Qiu Y, Khonsari M (2011) Performance analysis of full-film textured surfaces with consideration of roughness effects. J Tribol 133(2):021704

    Article  Google Scholar 

  39. Bujurke NM, Kudenatti RB (2007) MHD lubrication flow between rough rectangular plates. Fluid Dyn Res 39(4):334–345

    Article  ADS  MathSciNet  Google Scholar 

  40. Naduvinamani NB, Fathima ST, Jamal S (2010) Effect of roughness on hydromagnetic squeeze films between porous rectangular plates. Tribol Int 43(11):2145–2151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

1.1 Appendix 1: Fluid film thickness expression for micro-dimples of different cross section shapes (Refer Fig. 1c)

Micro dimple shape

Expression for \(h_{tex}\)

Domain

Equations

Spherical: Sp

\(\sqrt {\left( {\frac{{h_{d}^{2} + r_{d}^{2} }}{{2h_{d} }}} \right)^{2} - \left( {x_{l}^{2} + z_{l}^{2} } \right)} - \frac{{r_{d}^{2} }}{{2h_{d} }} + \frac{{h_{d} }}{2}\)

\(\left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} < r_{d}\)—Sp

(14)

Spherical half: Sp(h)

\(\left( {\left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} < r_{d} } \right)\) and \(z_{l} > 0\)—Sp(h)

Conical: Con

\(\left[ {1 - \frac{{\sqrt {\left( {x_{l}^{2} + z_{l}^{2} } \right)} }}{{r_{d} }}} \right]h_{d}\)

\(\left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} < r_{d}\)— Con

(15)

Conical half: Con(h)

\(\left( {\left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} < r_{d} } \right)\) and \(z_{l} > 0\)—Con(h)

Conical frustum: Confr

\(\left[ {1 - \frac{{\sqrt {\left( {x_{l}^{2} + z_{l}^{2} } \right)} }}{{r_{d} }}} \right]h_{d}\)

\(\frac{{r_{d} }}{2} < \left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} < r_{d}\)—Confr

\(h_{d}\)

\(\left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} \le \frac{{r_{d} }}{2}\)—(confr)

(16)

Conical frustum half: Confr(h)

\(\left[ {1 - \frac{{\sqrt {\left( {x_{l}^{2} + z_{l}^{2} } \right)} }}{{r_{d} }}} \right]h_{d}\)

\(\left( {\frac{{r_{d} }}{2} < \left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} < r_{d} } \right)\) and \(z_{l} > 0\)—Confr(h)

(17)

 

\(h_{d}\)

\(\left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} \le \frac{{r_{d} }}{2}\) and \(z_{l} > 0\)—Confr(h)

(18)

Cylindrical: Cyl

\(h_{d}\)

\(\left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} < r_{d}\)—Cyl

Cylindrical half: Cyl(h)

\(\left( {\left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} < r_{d} } \right)\) & \(z_{l} > 0\)—Cyl(h)

Untextured zone

\(0\)

\(\left( {\left( {x_{l}^{2} + z_{l}^{2} } \right)^{1/2} \geq r_{d} } \right)\)

(19)

1.2 Appendix 2: Finite element formulation of modified Reynolds equation

The residue of Reynolds equation in FEM has been obtained as follows:

$$\begin{aligned} R_{es} & = \frac{\partial }{{\partial \bar{x}}}\left( {\bar{h}^{3} \emptyset_{x} g\frac{\partial }{{\partial \bar{x}}}\left\{ {\mathop \sum \limits_{j = 1}^{4} \left( {\bar{p}_{j} N_{j} } \right)} \right\}} \right) \\ & \quad + \frac{\partial }{{\partial \bar{z}}}\left( {\bar{h}^{3} \emptyset_{z} g\frac{\partial }{{\partial \bar{z}}}\left\{ {\mathop \sum \limits_{j = 1}^{4} \left( {\bar{p}_{j} N_{j} } \right)} \right\}} \right) \\ & \quad -\uplambda\bar{u}\frac{{\partial \bar{h}_{T} }}{{\partial \bar{x}}} -\uplambda\bar{w}\frac{{\partial \bar{h}_{T} }}{{\partial \bar{z}}} - \varUpsilon \frac{{\partial \bar{h}_{T} }}{{\partial \bar{t}}} \\ \end{aligned}$$
(20)

Weak formulation of modified Reynolds equation:

$$\iint\limits_{{\Omega ^{e} }} {}\left( {N_{j} *R_{es} } \right)d\bar{x}d\bar{z} = 0$$
(21)

Elemental system of equation:

$$\left[ {\bar{F}_{ij}^{e} } \right]\left\{ {\bar{p}} \right\} = \left\{ {\bar{Q}_{i}^{e} } \right\} + \left[ {\overline{RH}_{ij}^{e} } \right]_{{\bar{u},\bar{w}}} + \overline{{\dot{h}}}_{T} \left[ {\overline{RS}_{ij}^{e} } \right]$$
(22)

Matrix terms for eth element in the elemental system of equations can be expressed as:

Fluidity matrix:

$$\bar{F}_{ij}^{e} = \iint\limits_{{\Omega ^{e} }} {g\left[ {\bar{h}^{3} \emptyset_{x} \frac{{\partial N_{i} }}{{\partial \bar{x}}}\frac{{\partial N_{j} }}{{\partial \bar{x}}} + \bar{h}^{3} \emptyset_{z} \frac{{\partial N_{i} }}{{\partial \bar{z}}}\frac{{\partial N_{j} }}{{\partial \bar{z}}}} \right]d\bar{x}d\bar{z}}$$
(23)

Flow matrix:

$$\bar{Q}_{i}^{e} = \int\limits_{{\Gamma ^{e} }} {\left[ {\left( {\bar{h}^{3} \emptyset_{x} \frac{\partial p}{{\partial \bar{x}}}} \right)m_{1} + \left( {\bar{h}^{3} \emptyset_{z} \frac{\partial p}{{\partial \bar{z}}}} \right)m_{2} } \right]N_{i} {\text{d}}\Gamma ^{e} }$$
(24)

Hydrodynamic term matrix:

$$\overline{RH}_{ij}^{e} = \iint\limits_{{\Omega ^{e} }} {\lambda \left[ {\bar{u}\bar{h}_{T} \frac{{\partial N_{i} }}{{\partial \bar{x}}} + \bar{w}\bar{h}_{T} \frac{{\partial N_{j} }}{{\partial \bar{z}}}} \right]d\bar{x}d\bar{z}}$$
(25)

Squeeze matrix:

$$\overline{RS}_{ij}^{e} = \iint\limits_{{\Omega ^{e} }} {\varUpsilon N_{i} d\bar{x}d\bar{z}}$$
(26)

Derivative of nodal pressure with respect to squeeze velocity and film thickness is expressed as:

$$\frac{{\partial \bar{p}}}{{\partial \bar{h}_{T} }} = \left[ {\bar{F}} \right]^{ - 1} \left[ {\frac{{\partial \left\{ {\bar{Q}} \right\}}}{{\partial \bar{h}_{T} }} + \frac{{\partial \left[ {\overline{RH}_{ij} } \right]}}{{\partial \bar{h}_{T} }} + \overline{{\dot{h}}}_{T} \frac{{\partial \left[ {\overline{RS}_{ij} } \right]}}{{\partial \bar{h}_{T} }} - \left\{ p \right\}\frac{{\partial \left[ {\bar{F}} \right]}}{{\partial \bar{h}_{T} }}} \right];$$
(27)
$$\frac{{\partial \bar{p}}}{{\partial \overline{{\dot{h}}}_{T} }} = \left[ {\bar{F}} \right]^{ - 1} \left[ {\frac{{\partial \left\{ {\bar{Q}} \right\}}}{{\partial \overline{{\dot{h}}}_{T} }} + \frac{{\partial \left[ {\overline{RH}_{ij} } \right]}}{{\partial \overline{{\dot{h}}}_{T} }} + \left[ {\overline{RS}_{ij} } \right] + \overline{{\dot{h}}}_{T} \frac{{\partial \left[ {\overline{RS}_{ij} } \right]}}{{\partial \overline{{\dot{h}}}_{T} }} - \left\{ {\bar{p}} \right\}\frac{{\partial \left[ {\bar{F}} \right]}}{{\partial \overline{{\dot{h}}}_{T} }}} \right]$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Sharma, S.C. Influence of dimple geometry and micro-roughness orientation on performance of textured hybrid thrust pad bearing. Meccanica 53, 3579–3606 (2018). https://doi.org/10.1007/s11012-018-0897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0897-0

Keywords

Navigation