Skip to main content
Log in

Investigation of surface texture influence on hydrodynamic performance of parallel slider bearing under transient condition

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Although surface texture has been becoming an attractive technique for improving hydrodynamic performance in lubrication system, the study of surface texture mainly focus on the steady-state load conditions. This investigation evaluates the effect of surface texture on hydrodynamic performance under transient lubrication in parallel bearing. In the case, considering cavitation phenomena in liquid lubricating film, a mass conserving formulation based on Elrod–Adams model with JFO conditions is then employed. The implementation of numerical simulation is discretized in spatial and time domain for calculating the pressure distribution. The effect of different geometrical configurations of lubricated contact on hydrodynamic performance is evaluated. The results show that surface texture in parallel bearing yields a great improvement in terms of friction force and friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(L\) :

Bearing length (mm)

\(B\) :

Bearing breadth (mm)

\(tl\) :

Texture width (mm)

\(ti\) :

Texture interval (mm)

\(d\) :

Texture depth (μm)

\(h(t)\) :

Oil film thickness between two surfaces (μm)

\(h_{0}\) :

Reference film thickness (μm)

\(h_{1}\) :

Oscillations amplitude (μm)

\(f\) :

Oscillations frequency (Hz)

\(t\) :

Time (s)

\(\eta\) :

Dynamic viscosity of lubricant (Pa s)

\(U\) :

Relative sliding velocity (m/s)

\(\rho\) :

Lubricant density (kg/m3)

\(\theta\) :

Cavity fraction

\(p\) :

Flow pressure (Pa)

\(p_{a}\) :

Ambient pressure (Pa)

\(p_{cav}\) :

Cavitation pressure (Pa)

\(\rho_{avg}\) :

Mean density of lubricant (kg/m3)

\(h\) :

Lubricant thickness of textured surface (μm)

\(\Omega\) :

Calculated domain

\(N_{1}\) :

Nodes in the x-direction

\(N_{2}\) :

Nodes in the y-direction

\(\Delta x\) :

Interval between two neighbor nodes in the x-direction

\(\Delta y\) :

Interval between two neighbor nodes in the y-direction

\(\Delta t\) :

Length of time step

\(K\) :

Discretization number of time

\(\omega\) :

Relaxation factor

\(W\) :

Load-carrying capacity (N)

\(F\) :

Friction force (N)

\(FC\) :

Friction coefficient

\(W_{avg}\) :

Time-averaged load-carrying capacity (N)

\(F_{avg}\) :

Time-averaged friction force (N)

\(FC_{avg}\) :

Time-averaged friction coefficient

References

  1. Hamilton DB, Walowit JA, Allen CM (1966) A theory of lubrication by micro irregular. J Basic Eng 88(1):177–185

    Article  Google Scholar 

  2. Tonder K (2001) Inlet roughness tribodevices: dynamic coefficients and leakage. Tribol Int 34(12):847–852. https://doi.org/10.1016/s0301-679x(01)00084-6

    Article  Google Scholar 

  3. Tonder K (2004) Hydrodynamic effects of tailored inlet roughnesses: extended theory. Tribol Int 37(2):137–142. https://doi.org/10.1016/s0301-679x(03)00043-4

    Article  Google Scholar 

  4. Etsion I (2000) Improving tribological performance of mechanical seals by laser surface texturing. In: Paper presented at the proceedings of the 17th international pump users symposium

  5. Etsion I, Halperin G (2002) A laser surface textured hydrostatic mechanical seal. Tribol Trans 45(3):430–434. https://doi.org/10.1080/10402000208982570

    Article  Google Scholar 

  6. Brizmer V, Kligerman Y, Etsion I (2003) A laser surface textured parallel thrust bearing. Tribol Trans 46(3):397–403. https://doi.org/10.1080/10402000308982643

    Article  Google Scholar 

  7. Gropper D, Wang L, Harvey TJ (2016) Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol Int 94:509–529. https://doi.org/10.1016/j.triboint.2015.10.009

    Article  Google Scholar 

  8. Fu Y, Ji J, Bi Q (2012) The influence of partially textured slider with oriented parabolic grooves on the behavior of hydrodynamic lubrication. Tribol Trans 55(2):210–217

    Article  Google Scholar 

  9. Ji J, Fu Y, Bi Q (2014) Influence of geometric shapes on the hydrodynamic lubrication of a partially textured slider with micro-grooves. J Tribol 136(4):041702

    Article  Google Scholar 

  10. Etsion I (2005) State of the art in laser surface texturing. J Tribol Trans ASME 127(1):248–253. https://doi.org/10.1115/1.1828070

    Article  Google Scholar 

  11. Fowell M, Olver AV, Gosman AD, Spikes HA, Pegg I (2007) Entrainment and inlet suction: two mechanisms of hydrodynamic lubrication in textured bearings. J Tribol Trans ASME 129(2):336–347. https://doi.org/10.1115/1.2540089

    Article  Google Scholar 

  12. Jakobsson B, Floberg L (1957) The finite journal bearing, considering vaporization: (Das Gleitlager von endlicher Breite mit Verdampfung). Gumperts, Mississauga

    Google Scholar 

  13. Olsson K-O (1965) Cavitation in dynamically loaded bearings. Trans of Chalmers University of Technology, Gothenburg, Sweden, p 308

  14. Elrod HG (1981) A cavitation algorithm. J Lubr Technol 103(3):350–354. https://doi.org/10.1115/1.3251669

    Article  Google Scholar 

  15. Giacopini M, Fowell MT, Dini D, Strozzi A (2010) A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation. J Tribol Trans ASME 132(4):12. https://doi.org/10.1115/1.4002215

    Article  Google Scholar 

  16. Bertocchi L, Dini D, Giacopini M, Fowell MT, Baldini A (2013) Fluid film lubrication in the presence of cavitation: a mass-conserving two-dimensional formulation for compressible, piezoviscous and non-Newtonian fluids. Tribol Int 67:61–71. https://doi.org/10.1016/j.triboint.2013.05.018

    Article  Google Scholar 

  17. Ausas R, Ragot P, Leiva J, Jai M, Bayada G, Buscaglia GC (2007) The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. J Tribol Trans ASME 129(4):868–875. https://doi.org/10.1115/1.2768088

    Article  Google Scholar 

  18. Ausas RF, Jai M, Buscaglia GC (2009) A mass-conserving algorithm for dynamical lubrication problems with cavitation. J Tribol Trans ASME 131(3):7. https://doi.org/10.1115/1.3142903

    Article  Google Scholar 

  19. Zarbane K, Zeghloul T, Hajjam M (2011) A numerical study of lubricant film behaviour subject to periodic loading. Tribol Int 44(12):1659–1667. https://doi.org/10.1016/j.triboint.2011.06.007

    Article  Google Scholar 

  20. Gherca A, Fatu A, Hajjam M, Maspeyrot P (2013) Influence of surface geometry on the hydrodynamic performances of parallel bearings in transient flow conditions. Tribol Trans 56(6):953–967. https://doi.org/10.1080/10402004.2013.813997

    Article  Google Scholar 

  21. Gherca A, Fatu A, Hajjam M, Maspeyrot P (2015) Effects of surface texturing in steady-state and transient flow conditions: Two-dimensional numerical simulation using a mass-conserving cavitation model. Proc Inst Mech Eng Part J J Eng Tribol 229(4):505–522

    Article  Google Scholar 

  22. Medina S, Fowell MT, Vladescu SC, Reddyhoff T, Pegg I, Olver AV, Dini D (2015) Transient effects in lubricated textured bearings. Proc Inst Mech Eng Part J J Eng Tribol 229(4):523–537. https://doi.org/10.1177/1350650115572448

    Article  Google Scholar 

  23. Ausas RF, Jai M, Ciuperca IS, Buscaglia GC (2013) Conservative one-dimensional finite volume discretization of a new cavitation model for piston-ring lubrication. Tribol Int 57:54–66. https://doi.org/10.1016/j.triboint.2012.07.003

    Article  Google Scholar 

  24. Profito FJ, Vlădescu S-C, Reddyhoff T, Dini D (2016) Transient experimental and modelling studies of laser-textured micro-grooved surfaces with a focus on piston-ring cylinder liner contacts. Tribol Int. https://doi.org/10.1016/j.triboint.2016.12.003

    Google Scholar 

  25. Vladescu SC, Medina S, Olver AV, Pegg IG, Reddyhoff T (2016) The transient friction response of a laser-textured, reciprocating contact to the entrainment of individual pockets. Tribol Lett 62(2):12. https://doi.org/10.1007/s11249-016-0669-8

    Article  Google Scholar 

  26. Elrod HG, Adams ML (1974) A computer program for cavitation and starvation problems. In: Paper presented at the cavitation and related phenomena, proceedings of the 1st leeds-lyon symposium on tribology, University of Leeds, Leeds, UK

Download references

Acknowledgements

This work is supported by the Research Foundation for Advanced Talents of Jiangsu University (Grant Numbers 1291110065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Fu, Y. Investigation of surface texture influence on hydrodynamic performance of parallel slider bearing under transient condition. Meccanica 53, 2053–2066 (2018). https://doi.org/10.1007/s11012-017-0809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0809-8

Keywords

Navigation