Skip to main content

Advertisement

Log in

Ammonia toxicity: from head to toe?

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdo AA (2006) An evidence-based update on hepatic encephalopathy. Saudi J Gastroenterol 12:8–15

    Article  PubMed  Google Scholar 

  • Agusti A, Cauli O, Rodrigo R, Llansola M, Hernández-Rabaza V, Felipo V (2011) p38 MAP kinase is a therapeutic target for hepatic encephalopathy in rats with portacaval shunts. Gut 60:1572–1579

    Article  CAS  PubMed  Google Scholar 

  • Aldridge DR, Tranah EJ, Shawcross DL (2015) Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol 5:S7–S20

    Article  PubMed  Google Scholar 

  • Alger BE, Nicoll RA (1983) Ammonia does not selectively block IPSPs in rat hippocampal pyramidal cells. J Neurophysiol 49:1381–1391

    CAS  PubMed  Google Scholar 

  • Ali R, Mittal G, Sultana S, Bhatnagar A (2012) Ameliorative potential of alpha-ketoglutaric acid (AKG) on acute lung injuries induced by ammonia inhalation in rats. Exp Lung Res 38:435–444

    Article  CAS  PubMed  Google Scholar 

  • Allert N, Köller H, Siebler M (1998) Ammonia-induced depolarization of cultured rat cortical astrocytes. Brain Res 782:261–270

    Article  CAS  PubMed  Google Scholar 

  • Bachmann C, Braissant O, Villard A-M, Boulat O, Henry H (2004) Ammonia toxicity to the brain and creatine. Mol Genet Metab 81(Suppl 1):S52–S57

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  CAS  PubMed  Google Scholar 

  • Bakouh N, Benjelloun F, Cherif-Zahar B, Planelles G (2006) The challenge of understanding ammonium homeostasis and the role of the Rh glycoproteins. Transfus Clin Biol 13:139–146

    Article  CAS  PubMed  Google Scholar 

  • Balasubramaniyan V, Wright G, Sharma V, NA D, Sharifi Y, Habtesion A, Mookerjee RP, Jalan R (2012) Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 302:G145–G152

    Article  CAS  PubMed  Google Scholar 

  • Benjamin AM, Okamoto K, Quastel JH (1978) Effects of ammonium ions on spontaneous action potentials and on contents of sodium, potassium, ammonium and chloride ions in brain in vitro. J Neurochem 30:131–143

    Article  CAS  PubMed  Google Scholar 

  • Bento LMA, Carvalheira JBC, Menegon LF, Saad MJA, Gontijo JAR (2005) Effects of NH4Cl intake on renal growth in rats: role of MAPK signalling pathway. Nephrol Dial Transplant 20:2654–2660

    Article  CAS  PubMed  Google Scholar 

  • Bessman AN, Evans JM (1955) The blood ammonia in congestive heart failure. Am Heart J 50:715–719

    Article  CAS  PubMed  Google Scholar 

  • Bode JG, Peters-Regehr T, Gressner AM, Häussinger D (1998) De novo expression of glutamine synthetase during transformation of hepatic stellate cells into myofibroblast-like cells. Biochem J 335(Pt 3):697–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosoi CR, Rose CF (2009) Identifying the direct effects of ammonia on the brain. Metab Brain Dis 24:95–102

    Article  CAS  PubMed  Google Scholar 

  • Bosoi CR, Yang X, Huynh J, Parent-Robitaille C, Jiang W, Tremblay M, Rose CF (2012) Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic Biol Med 52:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Bosoi CR, Zwingmann C, Marin H, Parent-Robitaille C, Huynh J, Tremblay M, Rose CF (2014) Increased brain lactate is central to the development of brain edema in rats with chronic liver disease. J Hepatol 60:554–560

    Article  CAS  PubMed  Google Scholar 

  • Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59:13–23

    Article  CAS  PubMed  Google Scholar 

  • Braissant O (2012) Creatine and guanidinoacetate transport at blood-brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis 35:655–664

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, Honegger P, Loup M, Iwase K, Takiguchi M, Bachmann C (1999) Hyperammonemia: regulation of argininosuccinate synthetase and argininosuccinate lyase genes in aggregating cell cultures of fetal rat brain. Neurosci Lett 266:89–92

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, McLin VA, Cudalbu C (2013) Ammonia toxicity to the brain. J Inherit Metab Dis 36:595–612

    Article  CAS  PubMed  Google Scholar 

  • Bromberg PA, Robin ED, Forkner CEJ (1960) The existence of ammonia in blood in vivo with observations on the significance of the NH4 plus minus NH3 system. J Clin Invest 39:332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes N, Turner RJ (1993) Extracellular potassium regulates the glutamine content of astrocytes: mediation by intracellular pH. Neurosci Lett 160:73–76

    Article  CAS  PubMed  Google Scholar 

  • Brück J, Görg B, Bidmon H-J, Zemtsova I, Qvartskhava N, Keitel V, Kircheis G, Häussinger D (2011) Locomotor impairment and cerebrocortical oxidative stress in portal vein ligated rats in vivo. J Hepatol 54:251–257

    Article  PubMed  CAS  Google Scholar 

  • Brusilow SW, Koehler RC, Traystman RJ, Cooper AJL (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. NeuroRx 7:452–470

    CAS  Google Scholar 

  • Busa WB, Nuccitelli R (1984) Metabolic regulation via intracellular pH. Am J Phys 246:R409–R438

    CAS  Google Scholar 

  • Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (2008) Pathophysiology of hepatic encephalopathy: the concept of synergism. Hepatol Res 38:S116–S121

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (2011) Neuroinflammation in acute liver failure: mechanisms and novel therapeutic targets. Neurochem Int 59:830–836

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF, Norenberg MD, Felipo V, Ferenci P, Albrecht J, Blei AT (2009) Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int 29:783–788

    Article  PubMed  Google Scholar 

  • Cagnon L, Braissant O (2007) Hyperammonemia-induced toxicity for the developing central nervous system. Brain Res Rev 56:183–197

    Article  CAS  PubMed  Google Scholar 

  • Cagnon L, Braissant O (2009) CNTF protects oligodendrocytes from ammonia toxicity: intracellular signaling pathways involved. Neurobiol Dis 33:133–142

    Article  CAS  PubMed  Google Scholar 

  • Calvert LD, Steiner MC, Morgan MD, Singh SJ (2010) Plasma ammonia response to incremental cycling and walking tests in COPD. Respir Med 104:675–681

    Article  CAS  PubMed  Google Scholar 

  • Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V (2007) Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 46:514–519

    Article  CAS  PubMed  Google Scholar 

  • Cauli O, Llansola M, Agustí A, Rodrigo R, Hernández-Rabaza V, Rodrigues TB, López-Larrubia P, Cerdán S, Felipo V (2014) Cerebral oedema is not responsible for motor or cognitive deficits in rats with hepatic encephalopathy. Liver Int 34:379–387

    Article  PubMed  Google Scholar 

  • Chance WT, Cao L, Nelson JL, Foley-Nelson T, Fischer JE (1988) Hyperammonemia in anorectic tumor-bearing rats. Life Sci 43:67–74

    Article  CAS  PubMed  Google Scholar 

  • Cooper JLA, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    CAS  PubMed  Google Scholar 

  • Cooper AJ, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE (1979) The metabolic fate of 13 N-labeled ammonia in rat brain. J Biol Chem 254:4982–4992

    CAS  PubMed  Google Scholar 

  • Cudalbu C (2013) In vivo studies of brain metabolism in animal models of hepatic encephalopathy using 1H magnetic resonance spectroscopy. Metab Brain Dis 28:167–174

    Article  CAS  PubMed  Google Scholar 

  • Dam G, Keiding S, Munk OL, Ott P, Vilstrup H, Bak LK, Waagepetersen HS, Schousboe A, Sørensen M (2013) Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake. Hepatology 57:258–265

    Article  CAS  PubMed  Google Scholar 

  • Dan H, Peng R-X, Ao Y, Liu Y-H (2008) Segment-specific proximal tubule injury in tripterygium glycosides intoxicated rats. J Biochem Mol Toxicol 22:422–428

    Article  CAS  PubMed  Google Scholar 

  • Dasarathy S (2012) Consilience in sarcopenia of cirrhosis. J Cachex Sarcopenia Muscle 3:225–237

    Article  Google Scholar 

  • Dasarathy S, McCullough AJ, Muc S, Schneyer A, Bennett CD, Dodig M, Kalhan SC (2011) Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol 54:915–921

    Article  CAS  PubMed  Google Scholar 

  • DeMorrow S (2013) The ammonia hypothesis of hepatic encephalopathy should be revisited. J Cell Sci Ther 03:e110

    Article  CAS  Google Scholar 

  • Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG (1989) Effects of acute hyperammonemia on cerebral amino acid metabolism and pHi in vivo, measured by 1H and 31P nuclear magnetic resonance. J Neurochem 52:741–749

    Article  CAS  PubMed  Google Scholar 

  • Ganda OP, Ruderman NB (1976) Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism 25:427–435

    Article  CAS  PubMed  Google Scholar 

  • Ganz R, Swain M, Traber P, DalCanto M, Butterworth RF, Blei AT (1989) Ammonia-induced swelling of rat cerebral cortical slices: implications for the pathogenesis of brain edema in acute hepatic failure. Metab Brain Dis 4:213–223

    Article  CAS  PubMed  Google Scholar 

  • Gordon DL, Krueger RA, Quie PG, Hostetter MK (1985) Amidation of C3 at the thiolester site: stimulation of chemiluminescence and phagocytosis by a new inflammatory mediator. J Immunol 134:3339–3345

    CAS  PubMed  Google Scholar 

  • Gregorios JB, Mozes LW, Norenberg LO, Norenberg MD (1985a) Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J Neuropathol Exp Neurol 44:397–403

    Article  CAS  PubMed  Google Scholar 

  • Gregorios JB, Mozes LW, Norenberg MD (1985b) Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J Neuropathol Exp Neurol 44:404–414

    Article  CAS  PubMed  Google Scholar 

  • Guevara M, Bru C, Ginès P, Fernández-Esparrach G, Sort P, Bataller R, Jiménez W, Arroyo V, Rodés J (1998) Increased cerebrovascular resistance in cirrhotic patients with ascites. Hepatology 28:39–44

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Kala G (2007) Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis 22:199–218

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  CAS  PubMed  Google Scholar 

  • Holecek M (2013) Branched-chain amino acids and ammonia metabolism in liver disease: therapeutic implications. Nutrition 29:1186–1191

    Article  CAS  PubMed  Google Scholar 

  • Ip YK, Chew SF (2010) Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 1:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalan R, De Chiara F, Balasubramaniyan V, Andreola F, Khetan V, Malago M, Pinzani M, Mookerjee RP, Rombouts K (2016) Ammonia produces pathological changes in human hepatic stellate cells and is a target of therapy of portal hypertension. J Hepatol 64:823–833

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar AR, Liu M, Moriyama M, Ramakrishnan R, Forbush B, Reddy PVB, Norenberg MD (2008) Na-K-Cl cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem 283:33874–33882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia B, Yu Z-J, Duan Z-F, Lü X-Q, Li J-J, Liu X-R, Sun R, Gao X-J, Wang Y-F, Yan J-Y et al (2014) Hyperammonaemia induces hepatic injury with alteration of gene expression profiles. Liver Int 34:748–758

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Desjardins P, Butterworth RF (2009a) Cerebral inflammation contributes to encephalopathy and brain edema in acute liver failure: protective effect of minocycline. J Neurochem 109:485–493

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Desjardins P, Butterworth RF (2009b) Direct evidence for central proinflammatory mechanisms in rats with experimental acute liver failure: protective effect of hypothermia. J Cereb Blood Flow Metab 29:944–952

    Article  CAS  PubMed  Google Scholar 

  • Jones EA, Smallwood RA, Craigie A, Rosenoer VM (1969) The enterohepatic circulation of urea nitrogen. Clin Sci 37:825–836

    CAS  PubMed  Google Scholar 

  • Jones JC, Coombes JS, Macdonald GA (2012) Exercise capacity and muscle strength in patients with cirrhosis. Liver Transpl 18:146–151

    Article  PubMed  Google Scholar 

  • Joshi D, O’Grady J, Patel A, Shawcross D, Connor S, Deasy N, Willars C, Bernal W, Wendon J, Auzinger G (2014) Cerebral oedema is rare in acute-on-chronic liver failure patients presenting with high-grade hepatic encephalopathy. Liver Int 34:362–366

    Article  PubMed  Google Scholar 

  • Kanamori K, Ross BD (1997) Glial alkalinization detected in vivo by 1H-15 N heteronuclear multiple-quantum coherence-transfer NMR in severely hyperammonemic rat. J Neurochem 68:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Kelly T, Kafitz KW, Roderigo C, Rose CR (2009) Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57:921–934

    Article  PubMed  Google Scholar 

  • Kikeri D, Sun A, Zeidel ML, Hebert SC (1989) Cell membranes impermeable to NH3. Nature 339:478–480

    Article  CAS  PubMed  Google Scholar 

  • Kosenko E, Kaminsky Y, Kaminsky A, Valencia M, Lee L, Hermenegildo C, Felipo V (1997) Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res 27:637–644

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    CAS  PubMed  Google Scholar 

  • Leke R, Bak LK, Iversen P, Sørensen M, Keiding S, Vilstrup H, Ott P, Portela LV, Schousboe A, Waagepetersen HS (2011) Synthesis of neurotransmitter GABA via the neuronal tricarboxylic acid cycle is elevated in rats with liver cirrhosis consistent with a high GABAergic tone in chronic hepatic encephalopathy. J Neurochem 117:824–832

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein GR, Kaiser LR, Tuchman M, Palevsky HI, Kotloff RM, O’Brien CB, Furth EE, Raps EC, Berry GT (1997) Fatal hyperammonemia following orthotopic lung transplantation. Gastroenterology 112:236–240

    Article  CAS  PubMed  Google Scholar 

  • Lichter-Konecki U, Mangin JM, Gordish-dressman H, Hoffman EP, Gallo V (2008) Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo. Glia 56:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling H, Ardjomand P, Samvakas S, Simm A, Busch GL, Lang F, Sebekova K, Heidland A (1998) Mesangial cell hypertrophy induced by NH4Cl: role of depressed activities of cathepsins due to elevated lysosomal pH. Kidney Int 53:1706–1712

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Nagase H, Huang CG, Calamita G, Agre P (2006) Purification and functional characterization of aquaporin-8. Biol Cell 98:153–161

    Article  CAS  PubMed  Google Scholar 

  • Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE, Plum F (1979) The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest 63:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lux HD (1971) Ammonium and chloride extrusion: hyperpolarizing synaptic inhibition in spinal Motoneurons. Science 173:555–557

    Article  CAS  PubMed  Google Scholar 

  • Marcaggi P, Jeanne M, Coles JA (2004) Neuron-glial trafficking of NH4+ and K+: separate routes of uptake into glial cells of bee retina. Eur J Neurosci 19:966–976

    Article  PubMed  Google Scholar 

  • Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Article  CAS  PubMed  Google Scholar 

  • Matkowskyj KA, Marrero JA, Carroll RE, Danilkovich AV, Green RM, Benya RV (1999) Azoxymethane-induced fulminant hepatic failure in C57BL/6 J mice: characterization of a new animal model. Am J Phys 277:G455–G462

    CAS  Google Scholar 

  • Mirbod F, Schaller RA, Cole GT (2002) Purification and characterization of urease isolated from the pathogenic fungus Coccidioides immitis. Med Mycol 40:35–44

    Article  CAS  PubMed  Google Scholar 

  • Mirbod-Donovan F, Schaller R, Hung C-Y, Xue J, Reichard U, Cole GT (2005) Urease produced by Coccidioides posadasii contributes to the virulence of this respiratory pathogen. Infect Immun 74:504–515

    Article  CAS  Google Scholar 

  • Mookerjee RP, Stadlbauer V, Lidder S, Wright GAK, Hodges SJ, Davies NA, Jalan R (2007) Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 46:831–840

    Article  CAS  PubMed  Google Scholar 

  • Moser H (1987) Electrophysiological evidence for ammonium as a substitute for potassium in activating the sodium pump in a crayfish sensory neuron. Can J Physiol Pharmacol 65:141–145

    Article  CAS  PubMed  Google Scholar 

  • Murthy CR, Rama Rao KV, Bai G, Norenberg MD (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 66:282–288

    Article  CAS  PubMed  Google Scholar 

  • Nath KA, Hostetter MK, Hostetter TH (1991) Increased ammoniagenesis as a determinant of progressive renal injury. Am J Kidney Dis 17:654–657

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A (2005) Resting microglial cells are highly dynamic Surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis 13:319–335

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Rama Rao KV, Jayakumar AR (2009) Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis 24:103–117

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma-Koyama A, Yoshida T, Tajima-Horiuchi H, Takahashi N, Yamaguchi S, Ohtsuka R, Takeuchi-Kashimoto Y, Kuwahara M, Takeda M, Nakashima N et al (2013) Didecyldimethylammonium chloride induces pulmonary fibrosis in association with TGF-beta signaling in mice. Exp Toxicol Pathol 65:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Olde Damink SWM, Jalan R, Deutz NEP, Redhead DN, Dejong CHC, Hynd P, Jalan RA, Hayes PC, Soeters PB (2003) The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 37:1277–1285

    Article  PubMed  Google Scholar 

  • Ortiz-Pujols S, Jones SW, Short KA, Morrell MR, Bermudez CA, Tilley SL, Cairns BA (2014) Management and sequelae of a 41-year-old Jehovah’s witness with severe anhydrous ammonia inhalation injury. J Burn Care Res 35:e180–e183

    Article  PubMed  Google Scholar 

  • Orvell BD, Wesson LG (1976) Some effects of ammonium salts on renal histology and function in the dog. Nephron 16:42–49

    Article  CAS  PubMed  Google Scholar 

  • Ott P, Clemmesen O, Larsen FS (2005) Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis. Neurochem Int 47:13–18

    Article  CAS  PubMed  Google Scholar 

  • Owen EE, Johnson JH, Tyor MP (1961) The effect of induced hyperammonemia on renal ammonia metabolism. J Clin Invest 40:215–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen RE, Contestabile A, Villani L, Fonnum F (1987) An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: the use of fluorocitrate. J Neurochem 48:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Phongsamran PV, Kim JW, Cupo Abbott J, Rosenblatt A (2010) Pharmacotherapy for hepatic encephalopathy. Drugs 70:1131–1148

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Tsien C, Thapalaya S, Narayanan A, Weihl CC, Ching JK, Eghtesad B, Singh K, Fu X, Dubyak G et al (2012) Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab 303:E983–E993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Thapaliya S, Runkana A, Yang Y, Tsien C, Mohan ML, Narayanan A, Eghtesad B, Mozdziak PE, McDonald C et al (2013) Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism. Proc Natl Acad Sci U S A 110:18162–18167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabkin R, Palathumpat M, Tsao T (1993) Ammonium chloride alters renal tubular cell growth and protein turnover. Lab Invest 68:427–438

    CAS  PubMed  Google Scholar 

  • Rangroo Thrane V, Thrane AS, Chanag J, Alleluia V, Nagelhus EA, Nedergaard M (2012) Real-time analysis of microglial activation and motility in hepatic and hyperammonemic encephalopathy. Neuroscience 220:247–255

    Article  CAS  PubMed  Google Scholar 

  • Rangroo Thrane V, Thrane AS, Wang F, Cotrina ML, Smith NA, Chen M, Xu Q, Kang N, Fujita T, Nagelhus EA et al (2013) Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 19:1643–1648

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468:253–262

    Article  CAS  PubMed  Google Scholar 

  • Rao KVR, Verkman AS, Curtis KM, Norenberg MD (2014) Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure. Neurobiol Dis 63:222–228

    Article  CAS  Google Scholar 

  • Ratnakumari L, Qureshi IA, Butterworth RF (1992) Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem Biophys Res Commun 184:746–751

    Article  CAS  PubMed  Google Scholar 

  • Robel S, Buckingham SC, Boni JL, Campbell SL, Danbolt NC, Riedemann T, Sutor B, Sontheimer H (2015) Reactive Astrogliosis causes the development of spontaneous seizures. J Neurosci 35:3330–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockey DC (1997) New concepts in the pathogenesis of portal hypertension: hepatic wounding and stellate cell contractility. Clin Liver Dis 1:13–29

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo R, Felipo V (2006) Brain regional alterations in the modulation of the glutamate-nitric oxide-cGMP pathway in liver cirrhosis. Role of hyperammonemia and cell types involved. Neurochem Int 48:472–477

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo R, Cauli O, Gomez-Pinedo U, Agusti A, Hernandez-Rabaza V, Garcia-Verdugo J-M, Felipo V (2010) Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 139:675–684

    Article  CAS  PubMed  Google Scholar 

  • Rose C, Kresse W, Kettenmann H (2005) Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J Biol Chem 280:20937–20944

    Article  CAS  PubMed  Google Scholar 

  • Rovira A, Alonso J, Córdoba J (2008) MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol 29:1612–1621

    Article  CAS  PubMed  Google Scholar 

  • Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282:5296–5301

    Article  CAS  PubMed  Google Scholar 

  • Satpute R, Lomash V, Hariharakrishnan J, Rao P, Singh P, Gujar N, Bhattacharya R (2014) Oxidative stress and tissue pathology caused by subacute exposure to ammonium acetate in rats and their response to treatments with alpha-ketoglutarate and N-acetyl cysteine. Toxicol Ind Health 30:12–24

    Article  CAS  PubMed  Google Scholar 

  • Schachter D, Sang JC (1997) Regional differentiation in the rat aorta for a novel signaling pathway: leucine to glutamate. Am J Phys 273:H1484–H1492

    CAS  Google Scholar 

  • Shaik IH, Miah MK, Bickel U, Mehvar R (2013) Effects of short-term portacaval anastomosis on the peripheral and brain disposition of the blood–brain barrier permeability marker sodium fluorescein in rats. Brain Res 1531:84–93

    Article  CAS  PubMed  Google Scholar 

  • Shanely RA, Coast JR (2002) Effect of ammonia on in vitro diaphragmatic contractility, fatigue and recovery. Respiration 69:534–541

    Article  CAS  PubMed  Google Scholar 

  • Shawcross DL, Wright GAK, Stadlbauer V, Hodges SJ, Davies NA, Wheeler-Jones C, Pitsillides AA, Jalan R (2008) Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 48:1202–1212

    Article  CAS  PubMed  Google Scholar 

  • Sinke AP, Jayakumar AR, Panickar KS, Moriyama M, Reddy PVB, Norenberg MD (2008) NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture. J Neurochem 106:2302–2311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sjöblom E, Höjer J, Kulling PEJ, Stauffer K, Suneson A, Ludwigs U (1999) A placebo-controlled experimental study of steroid inhalation therapy in ammonia-induced lung injury. J Toxicol Clin Toxicol 37:59–67

    Article  PubMed  Google Scholar 

  • Skowronska M, Albrecht J (2012) Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res 21:236–244

    Article  CAS  PubMed  Google Scholar 

  • Sørensen M (2013) Update on cerebral uptake of blood ammonia. Metab Brain Dis 28:155–159

    Article  PubMed  CAS  Google Scholar 

  • Swain MS, Blei AT, Butterworth RF, Kraig RP (1991) Intracellular pH rises and astrocytes swell after portacaval anastomosis in rats. Am J Phys 261:R1491–R1496

    CAS  Google Scholar 

  • Szerb JC, Butterworth RF (1992) Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog Neurobiol 39:135–153

    Article  CAS  PubMed  Google Scholar 

  • Tanigami H, Rebel A, Martin LJ, Chen T-Y, Brusilow SW, Traystman RJ, Koehler RC (2005) Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience 131:437–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thumburu KK, Taneja S, Vasishta RK, Dhiman RK (2012) Neuropathology of acute liver failure. Neurochem Int 60:672–675

    Article  CAS  PubMed  Google Scholar 

  • Tsien CD, McCullough AJ, Dasarathy S (2012) Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol 27:430–441

    Article  CAS  PubMed  Google Scholar 

  • Tsien C, Davuluri G, Singh D, Allawy A, Have GAMT, Thapaliya S, Schulze JM, Barnes D, McCullough AJ, Engelen MPKJ et al (2015) Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology 61:2018–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, Takano T, Bekar L, Nedergaard M (2012) Astrocytes modulate neural network activity by Ca2 + −dependent uptake of extracellular K+. Sci Signal 5:ra26

    PubMed  PubMed Central  Google Scholar 

  • Waniewski RA (1992) Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J Neurochem 58:167–174

    Article  CAS  PubMed  Google Scholar 

  • Willard-Mack CL, Koehler RC, Hirata T, Cork LC, Takahashi H, Traystman RJ, Brusilow SW (1996) Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71:589–599

    Article  CAS  PubMed  Google Scholar 

  • Wise HZ, Hung C-Y, Whiston E, Taylor JW, Cole GT (2013) Extracellular ammonia at sites of pulmonary infection with Coccidioides posadasii contributes to severity of the respiratory disease. Microb Pathog 59-60:19–28

    Article  CAS  PubMed  Google Scholar 

  • Wootton JC (1983) Re-assessment of ammonium-ion affinities of NADP-specific glutamate dehydrogenases. Activation of the Neurospora crassa enzyme by ammonium and rubidium ions. Biochem J 209:527–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Tsai AL, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273:25804–25808

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Takahashi Y, Imai K, Mishima N, Yazawa R, Inoue K, Itoh K, Kagawa Y, Inoue Y (2013) Risk factors for hyperammonemia in pediatric patients with epilepsy. Epilepsia 54:983–989

    Article  CAS  PubMed  Google Scholar 

  • Ytrebø LM, Sen S, Rose C, Davies NA, Nedredal GI, Fuskevaag O-M, Have GAMT, Prinzen FW, Williams R, Deutz NEP et al (2006) Systemic and regional hemodynamics in pigs with acute liver failure and the effect of albumin dialysis. Scand J Gastroenterol 41:1350–1360

    Article  PubMed  CAS  Google Scholar 

  • Zemtsova I, Görg B, Keitel V, Bidmon H-J, Schrör K, Häussinger D (2011) Microglia activation in hepatic encephalopathy in rats and humans. Hepatology 54:204–215

    Article  CAS  PubMed  Google Scholar 

  • Zielinska M, Ruszkiewicz J, Hilgier W, Fręśko I, Albrecht J (2011) Hyperammonemia increases the expression and activity of the glutamine/arginine transporter y + LAT2 in rat cerebral cortex: implications for the nitric oxide/cGMP pathway. Neurochem Int 58:190–195

    Article  CAS  PubMed  Google Scholar 

  • Zieve L (1987) Pathogenesis of hepatic encephalopathy. Metab Brain Dis 2:147–165

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher F. Rose.

Ethics declarations

Disclosures

The authors have no conflicts to disclose. SD supported in part by NIH grants: RO1 DK 83414, R21 AA 022742, UO1 AA021893 and P50 AA024333 8236.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasarathy, S., Mookerjee, R.P., Rackayova, V. et al. Ammonia toxicity: from head to toe?. Metab Brain Dis 32, 529–538 (2017). https://doi.org/10.1007/s11011-016-9938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9938-3

Keywords

Navigation