Skip to main content

Advertisement

Log in

Microglia: dismantling and rebuilding circuits after acute neurological injury

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The brain is comprised of neurons and its support system including astrocytes, glial cells and microglia, thereby forming neurovascular units. Neurons require support from glial cells to establish and maintain functional circuits, but microglia are often overlooked. Microglia function as the immune cell of the central nervous system, acting to monitor the microenvironment for changes in signaling, pathogens and injury. More recently, other functional roles for microglia within the healthy brain have been identified, including regulating synapse formation, elimination and function. This review aims to highlight and discuss these alternate microglial roles in the healthy and in contrast, diseased brain with a focus on two acute neurological diseases, traumatic brain injury and epilepsy. In these conditions, microglial roles in synaptic stripping and stabilization as part of neuronal:glial interactions may position them as mediators of the transition between injury-induced circuit dismantling and subsequent reorganization. Increased understanding of microglia roles could identify therapeutic targets to mitigate the consequences of neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adalbert R, Gilley J, Coleman MP (2007) Abeta, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol Med 13(4):135–142

    Article  CAS  PubMed  Google Scholar 

  • Ajami B et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543

    Article  CAS  PubMed  Google Scholar 

  • Annunziato L, Boscia F, Pignataro G (2013) Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J Cereb Blood Flow Metab 33(7):969–982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Araque A et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215

    Article  CAS  PubMed  Google Scholar 

  • Barclay AN et al (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23(6):285–290

    Article  CAS  PubMed  Google Scholar 

  • Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81(12):1079–1088

    Article  PubMed  Google Scholar 

  • Beumer W et al (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92(5):959–975

    Article  CAS  PubMed  Google Scholar 

  • Biber K et al (2006) Chemokines and their receptors in central nervous system disease. Curr Drug Targets 7(1):29–46

    Article  CAS  PubMed  Google Scholar 

  • Biber K et al (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602

    Article  CAS  PubMed  Google Scholar 

  • Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61(1):62–70

    Article  PubMed  Google Scholar 

  • Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 85(2):145–157

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Boer K et al (2006) Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 173(1–2):188–195

    Article  CAS  PubMed  Google Scholar 

  • Brockhaus J, Moller T, Kettenmann H (1996) Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 16(1):81–90

    Article  CAS  PubMed  Google Scholar 

  • Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao T et al (2012) Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 225:65–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cardona AE et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924

    Article  CAS  PubMed  Google Scholar 

  • Carthew HL, Ziebell JM, Vink R (2012) Substance P-induced changes in cell genesis following diffuse traumatic brain injury. Neuroscience 214:78–83

    Article  CAS  PubMed  Google Scholar 

  • Chen SK et al (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141(5):775–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davalos D et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  CAS  PubMed  Google Scholar 

  • Derecki NC et al (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484(7392):105–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dityatev A, Rusakov DA (2011) Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 21(2):353–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drexel M, Preidt AP, Sperk G (2012) Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology 63(5):806–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frick LR, Williams K, Pittenger C (2013) Microglial dysregulation in psychiatric disease. Clin Dev Immunol 2013:608654

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci 14(5):337–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graeber MB (2010) Changing face of microglia. Science 330(6005):783–788

    Article  CAS  PubMed  Google Scholar 

  • Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Hailer NP, Jarhult JD, Nitsch R (1996) Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 18(4):319–331

    Article  CAS  PubMed  Google Scholar 

  • Hailer NP et al (1997) Fluorescent dye prelabelled microglial cells migrate into organotypic hippocampal slice cultures and ramify. Eur J Neurosci 9(4):863–866

    Article  CAS  PubMed  Google Scholar 

  • Hall KD, Lifshitz J (2010) Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res 1323:161–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2(3):185–193

    Article  CAS  PubMed  Google Scholar 

  • Hoek RM et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Kalla R et al (2001) Microglia and the early phase of immune surveillance in the axotomized facial motor nucleus: impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in macrophage-colony stimulating factor-deficient mice. J Comp Neurol 436(2):182–201

    Article  CAS  PubMed  Google Scholar 

  • Kelley BJ et al (2006) Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and Wallerian degeneration. Exp Neurol 198(2):350–360

    Article  PubMed  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  CAS  PubMed  Google Scholar 

  • Ladeby R et al (2005) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 48(2):196–206

    Article  CAS  PubMed  Google Scholar 

  • Lazar G, Pal E (1996) Removal of cobalt-labeled neurons and nerve fibers by microglia from the frog’s brain and spinal cord. Glia 16(2):101–107

    Article  CAS  PubMed  Google Scholar 

  • Learoyd AE, Lifshitz J (2012) Comparison of rat sensory behavioral tasks to detect somatosensory morbidity after diffuse brain-injury. Behav Brain Res 226(1):197–204

    Article  PubMed Central  PubMed  Google Scholar 

  • Lifshitz J, Lisembee AM (2012) Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Struct Funct 217(1):49–61

    Article  PubMed Central  PubMed  Google Scholar 

  • Lifshitz J, Kelley BJ, Povlishock JT (2007) Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J Neuropathol Exp Neurol 66(3):218–229

    Article  PubMed  Google Scholar 

  • McNamara KC, Lisembee AM, Lifshitz J (2010) The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats. J Neurotrauma 27(4):695–706

    Article  PubMed Central  PubMed  Google Scholar 

  • Mizuno T et al (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979(1–2):65–70

    Article  CAS  PubMed  Google Scholar 

  • Morganti-Kossmann MC et al (2001) Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock 16(3):165–177

    Article  CAS  PubMed  Google Scholar 

  • Morris GP et al (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Pardo CA et al (2004) The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia 45(5):516–526

    Article  PubMed  Google Scholar 

  • Perry VH, O’Connor V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2(5):e00047

    PubMed  Google Scholar 

  • Prinz M et al (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14(10):1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  CAS  PubMed  Google Scholar 

  • Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–439

    Article  CAS  PubMed  Google Scholar 

  • Roth TL et al (2014) Transcranial amelioration of inflammation and cell death after brain injury. Nature 505(7482):223–228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schafer DP, Stevens B (2010) Synapse elimination during development and disease: immune molecules take centre stage. Biochem Soc Trans 38(2):476–481

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61(1):24–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: from immunity to behaviour. Curr Opin Neurobiol 21(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Scott DA et al (2010) A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci 30(24):8083–8095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sierra A et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7(4):483–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siskova Z et al (2009) Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol 175(4):1610–1621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2014) Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20(2):160–172

    Article  CAS  PubMed  Google Scholar 

  • Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389

    Article  CAS  PubMed  Google Scholar 

  • Stevens B et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57(6):563–581

    Article  CAS  PubMed  Google Scholar 

  • Svensson M, Aldskogius H (1993) Synaptic density of axotomized hypoglossal motorneurons following pharmacological blockade of the microglial cell proliferation. Exp Neurol 120(1):123–131

    Article  CAS  PubMed  Google Scholar 

  • Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85(3):352–370

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD et al (2007) Evidence for synaptic stripping by cortical microglia. Glia 55(4):360–368

    Article  PubMed  Google Scholar 

  • Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8(11):e1000527

    Article  PubMed Central  PubMed  Google Scholar 

  • Veerhuis R et al (1999) Cytokines associated with amyloid plaques in Alzheimer’s disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Exp Neurol 160(1):289–299

    Article  CAS  PubMed  Google Scholar 

  • Veerhuis R, Nielsen HM, Tenner AJ (2011) Complement in the brain. Mol Immunol 48(14):1592–1603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vezzani A, Balosso S, Ravizza T (2012) Inflammation and epilepsy. Handb Clin Neurol 107:163–175

    Article  PubMed  Google Scholar 

  • Wake H et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980

    Article  CAS  PubMed  Google Scholar 

  • Wake H et al (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217

    Article  CAS  PubMed  Google Scholar 

  • Wang CC et al (1996) Immunohistochemical study of amoeboid microglial cells in fetal rat brain. J Anat 189(Pt 3):567–574

    PubMed Central  PubMed  Google Scholar 

  • Wanner IB et al (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33(31):12870–12886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wirenfeldt M et al (2009) Increased activation of Iba1+ microglia in pediatric epilepsy patients with Rasmussen’s encephalitis compared with cortical dysplasia and tuberous sclerosis complex. Neurobiol Dis 34(3):432–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodruff TM et al (2010) The role of the complement system and the activation fragment C5a in the central nervous system. Neuromol Med 12(2):179–192

    Article  CAS  Google Scholar 

  • Wright GJ et al (2001) The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 102(2):173–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada J, Nakanishi H, Jinno S (2011) Differential involvement of perineuronal astrocytes and microglia in synaptic stripping after hypoglossal axotomy. Neuroscience 182:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ziebell JM et al (2011) Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res 1414:94–105

    Article  CAS  PubMed  Google Scholar 

  • Ziebell JM et al (2012) Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflammation 9:247

    Article  PubMed Central  PubMed  Google Scholar 

  • Zujovic V et al (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29(4):305–315

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenna M. Ziebell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziebell, J.M., Adelson, P.D. & Lifshitz, J. Microglia: dismantling and rebuilding circuits after acute neurological injury. Metab Brain Dis 30, 393–400 (2015). https://doi.org/10.1007/s11011-014-9539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9539-y

Keywords

Navigation