Skip to main content
Log in

Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Disruption and consequent reorganization of central nervous system circuits following traumatic brain injury may manifest as functional deficits and behavioral morbidities. We previously reported axotomy and neuronal atrophy in the ventral basal (VB) complex of the thalamus, without gross degeneration after experimental diffuse brain injury in adult rats. Pathology in VB coincided with the development of late-onset aberrant behavioral responses to whisker stimulation, which lead to the current hypothesis that neurodegeneration after experimental diffuse brain injury includes the primary somatosensory barrel cortex (S1BF), which receives projection of VB neurons and mediates whisker somatosensation. Over 28 days after midline fluid percussion brain injury, argyrophilic reaction product within superficial layers and layer IV barrels at 1 day progresses into the cortex to subcortical white matter by 7 days, and selective inter-barrel septa and subcortical white matter labeling at 28 days. Cellular consequences were determined by stereological estimates of neuronal nuclear volumes and number. In all cortical layers, neuronal nuclear volumes significantly atrophied by 42–49% at 7 days compared to sham, which marginally attenuated by 28 days. Concomitantly, the number of healthy neurons was reduced by 34–45% at 7 days compared to sham, returning to control levels by 28 days. Progressive neurodegeneration, including argyrophilic reaction product and neuronal nuclear atrophy, indicates injury-induced damage and reorganization of the reciprocal thalamocortical projections that mediate whisker somatosensation. The rodent whisker barrel circuit may serve as a discrete model to evaluate the causes and consequences of circuit reorganization after diffuse brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beltramino CA, de Olmos JS, Gallyas F, Heimer L, Zaborszky L (1993) Silver staining as a tool for neurotoxic assessment. NIDA Res Monogr 136:101–126

    PubMed  CAS  Google Scholar 

  • Biasca N, Maxwell WL (2007) Minor traumatic brain injury in sports: a review in order to prevent neurological sequelae. Prog Brain Res 161:263–291

    Article  PubMed  Google Scholar 

  • Bohnen N, Twijnstra A, Wijnen G, Jolles J (1991) Tolerance for light and sound of patients with persistent post-concussional symptoms 6 months after mild head injury. J Neurol 238:443–446

    Article  PubMed  CAS  Google Scholar 

  • Bothwell S, Meredith GE, Phillips J, Staunton H, Doherty C, Grigorenko E, Glazier S, Deadwyler SA, O’Donovan CA, Farrell M (2001) Neuronal hypertrophy in the neocortex of patients with temporal lobe epilepsy. J Neurosci 21:4789–4800

    PubMed  CAS  Google Scholar 

  • Christodoulou C, DeLuca J, Ricker JH, Madigan NK, Bly BM, Lange G, Kalnin AJ, Liu WC, Steffener J, Diamond BJ, Ni AC (2001) Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. J Neurol Neurosurg Psychiatry 71:161–168

    Article  PubMed  CAS  Google Scholar 

  • de Olmos JS, Beltramino CA, de Olmos de Lorenzo S (1994) Use of an amino-cupric-silver technique for the detection of early and semiacute neuronal degeneration caused by neurotoxicants, hypoxia, and physical trauma. Neurotoxicol Teratol 16:545–561

    Article  PubMed  Google Scholar 

  • de Olmos S, Bender C, de Olmos JS, Lorenzo A (2009) Neurodegeneration and prolonged immediate early gene expression throughout cortical areas of the rat brain following acute administration of dizocilpine. Neuroscience 164:1347–1359

    Article  PubMed  Google Scholar 

  • Feldman DE, Brecht M (2005) Map plasticity in somatosensory cortex. Science 310:810–815

    Article  PubMed  CAS  Google Scholar 

  • Finch CE (1993) Neuron atrophy during aging: programmed or sporadic? Trends Neurosci 16:104–110

    Article  PubMed  CAS  Google Scholar 

  • Giaume C, Maravall M, Welker E, Bonvento G (2009) The barrel cortex as a model to study dynamic neuroglial interaction. Neuroscientist 15:351–366

    Article  PubMed  CAS  Google Scholar 

  • Glassman RB (1994) Behavioral specializations of si and sii cortex: A comparative examination of the neural logic of touch in rats, cats, and other mammals. Exp Neurol 125:134–141

    Article  PubMed  CAS  Google Scholar 

  • Gogolla N, Galimberti I, Caroni P (2007) Structural plasticity of axon terminals in the adult. Curr Opin Neurobiol 17:516–524

    Article  PubMed  CAS  Google Scholar 

  • Gold BG, Mobley WC, Matheson SF (1991) Regulation of axonal caliber, neurofilament content, and nuclear localization in mature sensory neurons by nerve growth factor. J Neurosci 11:943–955

    PubMed  CAS  Google Scholar 

  • Greer JE, McGinn MJ, Povlishock JT (2011) Diffuse traumatic axonal injury in the mouse induces atrophy, c-jun activation, and axonal outgrowth in the axotomized neuronal population. J Neurosci 31:5089–5105

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 147:219–223

    Article  Google Scholar 

  • Gundersen HJG (1988) The nucleator. J Microsc 151:3–21

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    Article  PubMed  CAS  Google Scholar 

  • Hall KD, Lifshitz J (2010) Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res 1323:161–173

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Bryant YD, Cho W, Sullivan PG (2008) Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de olmos silver and fluorojade staining methods. J Neurotrauma 25:235–247

    Article  PubMed  Google Scholar 

  • Hosseini AH, Lifshitz J (2009) Brain injury forces of moderate magnitude elicit the fencing response. Med Sci Sports Exerc 41:1687–1697

    Article  PubMed  Google Scholar 

  • Kelley BJ, Farkas O, Lifshitz J, Povlishock JT (2006) Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and wallerian degeneration. Exp Neurol 198:350–360

    Article  PubMed  Google Scholar 

  • Kleim JA, Jones TA, Schallert T (2003) Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res 28:1757–1769

    Article  PubMed  CAS  Google Scholar 

  • Langlois JA, Rutland-Brown W, Thomas KE (2004) Traumatic brain injury in the united states: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta

    Google Scholar 

  • Levine B, Cabeza R, McIntosh AR, Black SE, Grady CL, Stuss DT (2002) Functional reorganisation of memory after traumatic brain injury: a study with h(2)(15)0 positron emission tomography. J Neurol Neurosurg Psychiatry 73:173–181

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz J (2008) Fluid percussion injury. In: Chen J, Xu Z, Xu XM, Zhang J (eds) Animal models of acute neurological injuries. The Humana Press, Inc, Totowa, NJ

    Google Scholar 

  • Lifshitz J, Kelley BJ, Povlishock JT (2007) Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J Neuropathol Exp Neurol 66:218–229

    Article  PubMed  Google Scholar 

  • Maxwell WL, Pennington K, MacKinnon MA, Smith DH, McIntosh TK, Wilson JT, Graham DI (2004) Differential responses in three thalamic nuclei in moderately disabled, severely disabled and vegetative patients after blunt head injury. Brain 127:2470–2478

    Article  PubMed  Google Scholar 

  • Maxwell WL, MacKinnon MA, Stewart JE, Graham DI (2010) Stereology of cerebral cortex after traumatic brain injury matched to the glasgow outcome score. Brain 133:139–160

    Article  PubMed  Google Scholar 

  • McAllister TW (1992) Neuropsychiatric sequelae of head injuries. Psychiatr Clin North Am 15:395–413

    PubMed  CAS  Google Scholar 

  • McGinn MJ, Kelley BJ, Akinyi L, Oli MW, Liu MC, Hayes RL, Wang KK, Povlishock JT (2009) Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion. J Neuropathol Exp Neurol 68:241–249

    Article  PubMed  CAS  Google Scholar 

  • McNamara KC, Lisembee AM, Lifshitz J (2010) The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats. J Neurotrauma 27:695–706

    Article  PubMed  Google Scholar 

  • Meythaler JM, Peduzzi JD, Eleftheriou E, Novack TA (2001) Current concepts: diffuse axonal injury-associated traumatic brain injury. Arch Phys Med Rehabil 82:1461–1471

    Article  PubMed  CAS  Google Scholar 

  • Mikics E, Baranyi J, Haller J (2008) Rats exposed to traumatic stress bury unfamiliar objects—a novel measure of hyper-vigilance in ptsd models? Physiol Behav 94:341–348

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Hillary FG, Biswal BB (2009) Resting network plasticity following brain injury. PLoS One 4:e8220

    Article  PubMed  Google Scholar 

  • O’Leary DD, Ruff NL, Dyck RH (1994) Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr Opin Neurobiol 4:535–544

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, vol 4. Academic Press, San Diego

    Google Scholar 

  • Pitkanen A, Immonen RJ, Grohn OH, Kharatishvili I (2009) From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options. Epilepsia 50(Suppl 2):21–29

    Article  PubMed  Google Scholar 

  • Povlishock JT (1986) Traumatically induced axonal damage without concomitant change in focally related neuronal somata and dendrites. Acta Neuropathol (Berl) 70:53–59

    Article  CAS  Google Scholar 

  • Prins ML (2008) Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab 28:1–16

    Article  PubMed  CAS  Google Scholar 

  • Reeves TM, Phillips LL, Povlishock JT (2005) Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury. Exp Neurol 196:126–137

    Article  PubMed  Google Scholar 

  • Rich KM, Yip HK, Osborne PA, Schmidt RE, Johnson EM Jr (1984) Role of nerve growth factor in the adult dorsal root ganglia neuron and its response to injury. J Comp Neurol 230:110–118

    Article  PubMed  CAS  Google Scholar 

  • Rich KM, Disch SP, Eichler ME (1989) The influence of regeneration and nerve growth factor on the neuronal cell body reaction to injury. J Neurocytol 18:569–576

    Article  PubMed  CAS  Google Scholar 

  • Royo NC, LeBold D, Magge SN, Chen I, Hauspurg A, Cohen AS, Watson DJ (2007) Neurotrophin-mediated neuroprotection of hippocampal neurons following traumatic brain injury is not associated with acute recovery of hippocampal function. Neuroscience 148:359–370

    Article  PubMed  CAS  Google Scholar 

  • Sa MJ, Madeira MD, Ruela C, Volk B, Mota-Miranda A, Lecour H, Goncalves V, Paula-Barbosa MM (2000) Aids does not alter the total number of neurons in the hippocampal formation but induces cell atrophy: a stereological study. Acta Neuropathol (Berl) 99:643–653

    Article  CAS  Google Scholar 

  • Saatman KE, Contreras PC, Smith DH, Raghupathi R, McDermott KL, Fernandez SC, Sanderson KL, Voddi M, McIntosh TK (1997) Insulin-like growth factor-1 (igf-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 147:418–427

    Article  PubMed  CAS  Google Scholar 

  • Singleton RH, Povlishock JT (2004) Identification and characterization of heterogeneous neuronal injury and death in regions of diffuse brain injury: evidence for multiple independent injury phenotypes. J Neurosci 24:3543–3553

    Article  PubMed  CAS  Google Scholar 

  • Singleton RH, Zhu J, Stone JR, Povlishock JT (2002) Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J Neurosci 22:791–802

    PubMed  CAS  Google Scholar 

  • Smith DH, Chen XH, Xu BN, McIntosh TK, Gennarelli TA, Meaney DF (1997) Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J Neuropathol Exp Neurol 56:822–834

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Cooper JD, Svendsen CN, Crossman P, Ip NY, Lindsay RM, Zafra F, Lindholm D (1993) Atrophy but not death of adult septal cholinergic neurons after ablation of target capacity to produce mrnas for ngf, bdnf, and nt3. J Neurosci 13:5263–5276

    PubMed  CAS  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    Article  PubMed  CAS  Google Scholar 

  • Steward O (1989) Reorganization of neuronal connections following cns trauma: Principles and experimental paradigms. J Neurotrauma 6:99–152

    Article  PubMed  CAS  Google Scholar 

  • Switzer RC III (2000) Application of silver degeneration stains for neurotoxicity testing. Toxicol Pathol 28:70–83

    Article  PubMed  CAS  Google Scholar 

  • Tran LD, Lifshitz J, Witgen BM, Schwarzbach E, Cohen AS, Grady MS (2006) Response of the contralateral hippocampus to lateral fluid percussion brain injury. J Neurotrauma 23:1330–1342

    Article  PubMed  Google Scholar 

  • Turrigiano GG (2008) The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell 135:422–435

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107

    Article  PubMed  CAS  Google Scholar 

  • Uzan M, Albayram S, Dashti SG, Aydin S, Hanci M, Kuday C (2003) Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. J Neurol Neurosurg Psychiatry 74:33–38

    Article  PubMed  CAS  Google Scholar 

  • Waddell PA, Gronwall DM (1984) Sensitivity to light and sound following minor head injury. Acta Neurol Scand 69:270–276

    Article  PubMed  CAS  Google Scholar 

  • Waite PME, Tracey DJ (1995) Trigeminal sensory system. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego

    Google Scholar 

  • Warner MA, Youn TS, Davis T, Chandra A, de la Marquez PC, Moore C, Harper C, Madden CJ, Spence J, McColl R, Devous M, King RD, az-Arrastia R (2010) Regionally selective atrophy after traumatic axonal injury. Arch Neurol 67:1336–1344

    Article  PubMed  Google Scholar 

  • West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14:275–285

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJG (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Ostergaard K, Andreassen OA, Finsen B (1996) Estimation of the number of somatostatin neurons in the striatum: An in situ hybridization study using the optical fractionator method. J Comp Neurol 370:11–22

    Article  PubMed  CAS  Google Scholar 

  • Witgen BM, Lifshitz J, Smith ML, Schwarzbach E, Liang SL, Grady MS, Cohen AS (2005) Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation. Neuroscience 133:1–15

    Article  PubMed  CAS  Google Scholar 

  • Woolsey TA, Van der LH (1970) The structural organization of layer iv in the somatosensory region (si) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. John T. Povlishock, Ms. C. Lynn Davis and Ms. Sue Walker for support and assistance in generating the tissue for stereological analysis. We thank the reviewers for constructive criticisms that improved the manuscript. This work was supported, in part, by the National Institutes of Health research grant (R01 NS065052) and core facility grant (P30 NS051220) and the Kentucky Spinal Cord and Head Injury Research Trust (7-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Lifshitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lifshitz, J., Lisembee, A.M. Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Struct Funct 217, 49–61 (2012). https://doi.org/10.1007/s00429-011-0323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0323-z

Keywords

Navigation