Skip to main content

Advertisement

Log in

The Role of the Complement System and the Activation Fragment C5a in the Central Nervous System

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The complement system is a pivotal component of the innate immune system which protects the host from infection and injury. Complement proteins can be induced in all cell types within the central nervous system (CNS), where the pathway seems to play similar roles in host defense. Complement activation produces the C5 cleavage fragment C5a, a potent inflammatory mediator, which recruits and activates immune cells. The primary cellular receptor for C5a, the C5a receptor (CD88), has been reported to be on all CNS cells, including neurons and glia, suggesting a functional role for C5a in the CNS. A second receptor for C5a, the C5a-like receptor 2 (C5L2), is also expressed on these cells; however, little is currently known about its potential role in the CNS. The potent immune and inflammatory actions of complement activation are necessary for host defense. However, if over-activated, or left unchecked it promotes tissue injury and contributes to brain disease pathology. Thus, complement activation, and subsequent C5a generation, is thought to play a significant role in the progression of CNS disease. Paradoxically, complement may also exert a neuroprotective role in these diseases by aiding in the elimination of aggregated and toxic proteins and debris which are a principal hallmark of many of these diseases. This review will discuss the expression and known roles for complement in the CNS, with a particular focus on the pro-inflammatory end-product, C5a. The possible overarching role for C5a in diseases of the CNS is reviewed, and the therapeutic potential of blocking C5a/CD88 interaction is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afagh, A., Cummings, B. J., Cribbs, D. H., Cotman, C. W., & Tenner, A. J. (1996). Localization and cell association of C1q in Alzheimer’s disease brain. Experimental Neurology, 138, 22–32.

    CAS  PubMed  Google Scholar 

  • Akiyama, H., Arai, T., Kondo, H., Tanno, E., Haga, C., & Ikeda, K. (2000). Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Disease and Associated Disorders, 14(Suppl 1), S47–S53.

    CAS  PubMed  Google Scholar 

  • Ames, R. S., Li, Y., Sarau, H. M., Nuthulaganti, P., Foley, J. J., Ellis, C., et al. (1996). Molecular cloning and characterization of the human anaphylatoxin C3a receptor. Journal of Biological Chemistry, 271, 20231–20234.

    CAS  PubMed  Google Scholar 

  • Armstrong, R. C., Harvath, L., & Dubois-Dalcq, M. E. (1990). Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. Journal of Neuroscience Research, 27, 400–407.

    CAS  PubMed  Google Scholar 

  • Avery, V. M., Adrian, D. L., & Gordon, D. L. (1993). Detection of mosaic protein mRNA in human astrocytes. Immunology and Cell Biology, 71(Pt 3), 215–219.

    CAS  PubMed  Google Scholar 

  • Barnum, S. R., Ishii, Y., Agrawal, A., & Volanakis, J. E. (1992a). Production and interferon-gamma-mediated regulation of complement component C2 and factors B and D by the astroglioma cell line U105-MG. Biochemical Journal, 287(Pt 2), 595–601.

    CAS  PubMed  Google Scholar 

  • Barnum, S. R., Jones, J. L., & Benveniste, E. N. (1992b). Interferon-gamma regulation of C3 gene expression in human astroglioma cells. Journal of Neuroimmunology, 38, 275–282.

    CAS  PubMed  Google Scholar 

  • Barnum, S. R., Jones, J. L., & Benveniste, E. N. (1993). Interleukin-1 and tumor necrosis factor-mediated regulation of C3 gene expression in human astroglioma cells. Glia, 7, 225–236.

    CAS  PubMed  Google Scholar 

  • Benard, M., Gonzalez, B. J., Schouft, M. T., Falluel-Morel, A., Vaudry, D., Chan, P., et al. (2004). Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Neuroprotective effect of C5a against apoptotic cell death. Journal of Biological Chemistry, 279, 43487–43496.

    CAS  PubMed  Google Scholar 

  • Benard, M., Raoult, E., Vaudry, D., Leprince, J., Falluel-Morel, A., Gonzalez, B. J., et al. (2008). Role of complement anaphylatoxin receptors (C3aR, C5aR) in the development of the rat cerebellum. Molecular Immunology, 45, 3767–3774.

    CAS  PubMed  Google Scholar 

  • Biro, A., Rovo, Z., Papp, D., Cervenak, L., Varga, L., Fust, G., et al. (2007). Studies on the interactions between C-reactive protein and complement proteins. Immunology, 121, 40–50.

    CAS  PubMed  Google Scholar 

  • Bohlson, S. S., Fraser, D. A., & Tenner, A. J. (2007). Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Molecular Immunology, 44, 33–43.

    CAS  PubMed  Google Scholar 

  • Boos, L., Campbell, I. L., Ames, R., Wetsel, R. A., & Barnum, S. R. (2004). Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis. Journal of Immunology, 173, 4708–4714.

    CAS  Google Scholar 

  • Bradt, B. M., Kolb, W. P., & Cooper, N. R. (1998). Complement-dependent proinflammatory properties of the Alzheimer’s disease beta-peptide. Journal of Experimental Medicine, 188, 431–438.

    CAS  PubMed  Google Scholar 

  • Cain, S. A., & Monk, P. N. (2002). The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). Journal of Biological Chemistry, 277, 7165–7169.

    CAS  PubMed  Google Scholar 

  • Chen, N., & Reiss, C. S. (2002). Innate immunity in viral encephalitis: Role of C5. Viral Immunology, 15, 365–372.

    CAS  PubMed  Google Scholar 

  • Cole, D. S., Hughes, T. R., Gasque, P., & Morgan, B. P. (2006). Complement regulator loss on apoptotic neuronal cells causes increased complement activation and promotes both phagocytosis and cell lysis. Molecular Immunology, 43, 1953–1964.

    CAS  PubMed  Google Scholar 

  • Cowell, R. M., Plane, J. M., & Silverstein, F. S. (2003). Complement activation contributes to hypoxic–ischemic brain injury in neonatal rats. Journal of Neuroscience, 23, 9459–9468.

    PubMed  Google Scholar 

  • Cudrici, C., Niculescu, T., Niculescu, F., Shin, M. L., & Rus, H. (2006). Oligodendrocyte cell death in pathogenesis of multiple sclerosis: Protection of oligodendrocytes from apoptosis by complement. Journal of Rehabilitation Research and Development, 43, 123–132.

    PubMed  Google Scholar 

  • Daveau, M., Benard, M., Scotte, M., Schouft, M. T., Hiron, M., Francois, A., et al. (2004). Expression of a functional C5a receptor in regenerating hepatocytes and its involvement in a proliferative signaling pathway in rat. Journal of Immunology, 173, 3418–3424.

    CAS  Google Scholar 

  • Davoust, N., Jones, J., Stahel, P. F., Ames, R. S., & Barnum, S. R. (1999). Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia, 26, 201–211.

    CAS  PubMed  Google Scholar 

  • Eikelenboom, P., Hack, C. E., Rozemuller, J. M., & Stam, F. C. (1989). Complement activation in amyloid plaques in Alzheimer’s dementia. Virchows Archiv B, Cell Pathology Including Molecular Pathology, 56, 259–262.

    CAS  PubMed  Google Scholar 

  • Farkas, I., Baranyi, L., Kaneko, Y., Liposits, Z., Yamamoto, T., & Okada, H. (1999). C5a receptor expression by TGW neuroblastoma cells. Neuroreport, 10, 3021–3025.

    CAS  PubMed  Google Scholar 

  • Farkas, I., Baranyi, L., Liposits, Z. S., Yamamoto, T., & Okada, H. (1998). Complement C5a anaphylatoxin fragment causes apoptosis in TGW neuroblastoma cells. Neuroscience, 86, 903–911.

    CAS  PubMed  Google Scholar 

  • Farkas, I., Takahashi, M., Fukuda, A., Yamamoto, N., Akatsu, H., Baranyi, L., et al. (2003). Complement C5a receptor-mediated signaling may be involved in neurodegeneration in Alzheimer’s disease. Journal of Immunology, 170, 5764–5771.

    CAS  Google Scholar 

  • Ferraiuolo, L., Heath, P. R., Holden, H., Kasher, P., Kirby, J., & Shaw, P. J. (2007). Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. Journal of Neuroscience, 27, 9201–9219.

    CAS  PubMed  Google Scholar 

  • Fonseca, M. I., Ager, R. R., Chu, S. H., Yazan, O., Sanderson, S. D., LaFerla, F. M., et al. (2009). Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. Journal of Immunology, 183, 1375–1383.

    CAS  Google Scholar 

  • Fonseca, M. I., Kawas, C. H., Troncoso, J. C., & Tenner, A. J. (2004a). Neuronal localization of C1q in preclinical Alzheimer’s disease. Neurobiology of Diseases, 15, 40–46.

    CAS  Google Scholar 

  • Fonseca, M. I., Zhou, J., Botto, M., & Tenner, A. J. (2004b). Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. Journal of Neuroscience, 24, 6457–6465.

    CAS  PubMed  Google Scholar 

  • Fukada, Y., Yasui, K., Kitayama, M., Doi, K., Nakano, T., Watanabe, Y., et al. (2007). Gene expression analysis of the murine model of amyotrophic lateral sclerosis: Studies of the Leu126delTT mutation in SOD1. Brain Research, 1160, 1–10.

    CAS  PubMed  Google Scholar 

  • Gao, H., Neff, T. A., Guo, R. F., Speyer, C. L., Sarma, J. V., Tomlins, S., et al. (2005). Evidence for a functional role of the second C5a receptor C5L2. FASEB Journal, 19, 1003–1005.

    CAS  PubMed  Google Scholar 

  • Garrett, M. C., Otten, M. L., Starke, R. M., Komotar, R. J., Magotti, P., Lambris, J. D., et al.. (2009). Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage. Brain Research.

  • Gasque, P., Chan, P., Fontaine, M., Ischenko, A., Lamacz, M., Gotze, O., et al. (1995a). Identification and characterization of the complement C5a anaphylatoxin receptor on human astrocytes. Journal of Immunology, 155, 4882–4889.

    CAS  Google Scholar 

  • Gasque, P., Chan, P., Mauger, C., Schouft, M. T., Singhrao, S., Dierich, M. P., et al. (1996b). Identification and characterization of complement C3 receptors on human astrocytes. Journal of Immunology, 156, 2247–2255.

    CAS  Google Scholar 

  • Gasque, P., Dean, Y. D., McGreal, E. P., VanBeek, J., & Morgan, B. P. (2000). Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology, 49, 171–186.

    CAS  PubMed  Google Scholar 

  • Gasque, P., Fontaine, M., & Morgan, B. P. (1995b). Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. Journal of Immunology, 154, 4726–4733.

    CAS  Google Scholar 

  • Gasque, P., Ischenko, A., Legoedec, J., Mauger, C., Schouft, M. T., & Fontaine, M. (1993). Expression of the complement classical pathway by human glioma in culture. A model for complement expression by nerve cells. Journal of Biological Chemistry, 268, 25068–25074.

    CAS  PubMed  Google Scholar 

  • Gasque, P., Julen, N., Ischenko, A. M., Picot, C., Mauger, C., Chauzy, C., et al. (1992). Expression of complement components of the alternative pathway by glioma cell lines. Journal of Immunology, 149, 1381–1387.

    CAS  Google Scholar 

  • Gasque, P., & Morgan, B. P. (1996). Complement regulatory protein expression by a human oligodendrocyte cell line: Cytokine regulation and comparison with astrocytes. Immunology, 89, 338–347.

    CAS  PubMed  Google Scholar 

  • Gasque, P., Singhrao, S. K., Neal, J. W., Gotze, O., & Morgan, B. P. (1997). Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. American Journal of Pathology, 150, 31–41.

    CAS  PubMed  Google Scholar 

  • Gasque, P., Singhrao, S. K., Neal, J. W., Wang, P., Sayah, S., Fontaine, M., et al. (1998). The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. Journal of Immunology, 160, 3543–3554.

    CAS  Google Scholar 

  • Gasque, P., Thomas, A., Fontaine, M., & Morgan, B. P. (1996a). Complement activation on human neuroblastoma cell lines in vitro: Route of activation and expression of functional complement regulatory proteins. Journal of Neuroimmunology, 66, 29–40.

    CAS  PubMed  Google Scholar 

  • Gavrilyuk, V., Kalinin, S., Hilbush, B. S., Middlecamp, A., McGuire, S., Pelligrino, D., et al. (2005). Identification of complement 5a-like receptor (C5L2) from astrocytes: Characterization of anti-inflammatory properties. Journal of Neurochemistry, 92, 1140–1149.

    CAS  PubMed  Google Scholar 

  • Gerard, N. P., & Gerard, C. (1991). The chemotactic receptor for human C5a anaphylatoxin. Nature, 349, 614–617.

    CAS  PubMed  Google Scholar 

  • Gerard, N. P., Lu, B., Liu, P., Craig, S., Fujiwara, Y., Okinaga, S., et al. (2005). An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. Journal of Biological Chemistry, 280, 39677–39680.

    CAS  PubMed  Google Scholar 

  • Gordon, D. L., Avery, V. M., Adrian, D. L., & Sadlon, T. A. (1992a). Detection of complement protein mRNA in human astrocytes by the polymerase chain reaction. Journal of Neuroscience Methods, 45, 191–197.

    CAS  PubMed  Google Scholar 

  • Gordon, D. L., Sadlon, T. A., Wesselingh, S. L., Russell, S. M., Johnstone, R. W., & Purcell, D. F. (1992b). Human astrocytes express membrane cofactor protein (CD46), a regulator of complement activation. Journal of Neuroimmunology, 36, 199–208.

    CAS  PubMed  Google Scholar 

  • Griffin, R. S., Costigan, M., Brenner, G. J., Ma, C. H. E., Scholz, J., Moss, A., et al. (2007). Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. Journal of Neuroscience, 27, 8699–8708.

    CAS  PubMed  Google Scholar 

  • Haviland, D. L., McCoy, R. L., Whitehead, W. T., Akama, H., Molmenti, E. P., Brown, A., et al. (1995). Cellular expression of the C5a anaphylatoxin receptor (C5aR): Demonstration of C5aR on nonmyeloid cells of the liver and lung. Journal of Immunology, 154, 1861–1869.

    CAS  Google Scholar 

  • Hosokawa, M., Klegeris, A., Maguire, J., & McGeer, P. L. (2003). Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia, 42, 417–423.

    PubMed  Google Scholar 

  • Huber-Lang, M., Sarma, J. V., Zetoune, F. S., Rittirsch, D., Neff, T. A., McGuire, S. R., et al. (2006). Generation of C5a in the absence of C3: A new complement activation pathway. Nature Medicine, 12, 682–687.

    CAS  PubMed  Google Scholar 

  • Huber-Lang, M., Younkin, E. M., Sarma, J. V., Riedemann, N., McGuire, S. R., Lu, K. T., et al. (2002). Generation of C5a by phagocytic cells. The American Journal of Pathology, 161, 1849–1859.

    CAS  PubMed  Google Scholar 

  • Humayun, S., Gohar, M., Volkening, K., Moisse, K., Leystra-Lantz, C., Mepham, J., et al. (2009). The complement factor C5a receptor is upregulated in NFL−/− mouse motor neurons. Journal of Neuroimmunology, 210, 52–62.

    CAS  PubMed  Google Scholar 

  • Ischenko, A., Sayah, S., Patte, C., Andreev, S., Gasque, P., Schouft, M. T., et al. (1998). Expression of a functional anaphylatoxin C3a receptor by astrocytes. Journal of Neurochemistry, 71, 2487–2496.

    Article  CAS  PubMed  Google Scholar 

  • Itagaki, S., Akiyama, H., Saito, H., & McGeer, P. L. (1994). Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer’s disease. Brain Research, 645, 78–84.

    CAS  PubMed  Google Scholar 

  • Jiang, H., Burdick, D., Glabe, C. G., Cotman, C. W., & Tenner, A. J. (1994). Beta-Amyloid activates complement by binding to a specific region of the collagen-like domain of the C1q A chain. Journal of Immunology, 152, 5050–5059.

    CAS  Google Scholar 

  • Kim, G. H., Mocco, J., Hahn, D. K., Kellner, C. P., Komotar, R. J., Ducruet, A. F., et al. (2008). Protective effect of C5a receptor inhibition after murine reperfused stroke. Neurosurgery, 63, 122–125; discussion 125–126.

    PubMed  Google Scholar 

  • Kleine, T. O., & Benes, L. (2006). Immune surveillance of the human central nervous system (CNS): Different migration pathways of immune cells through the blood–brain barrier and blood–cerebrospinal fluid barrier in healthy persons. Cytometry A, 69, 147–151.

    PubMed  Google Scholar 

  • Lacy, M., Jones, J., Whittemore, S. R., Haviland, D. L., Wetsel, R. A., & Barnum, S. R. (1995). Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. Journal of Neuroimmunology, 61, 71–78.

    CAS  PubMed  Google Scholar 

  • Lee, D. K., George, S. R., Cheng, R., Nguyen, T., Liu, Y., Brown, M., et al. (2001). Identification of four novel human G protein-coupled receptors expressed in the brain. Molecular Brain Research, 86, 13–22.

    CAS  PubMed  Google Scholar 

  • Leinhase, I., Holers, V. M., Thurman, J. M., Harhausen, D., Schmidt, O. I., Pietzcker, M., et al. (2006). Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation. BMC Neuroscience, 7, 55.

    PubMed  Google Scholar 

  • Levi-Strauss, M., & Mallat, M. (1987). Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. Journal of Immunology, 139, 2361–2366.

    CAS  Google Scholar 

  • Li, K., Sacks, S. H., & Zhou, W. (2007). The relative importance of local and systemic complement production in ischaemia, transplantation and other pathologies. Molecular Immunology, 44, 3866–3874.

    CAS  PubMed  Google Scholar 

  • Liszewski, M. K., Farries, T. C., Lublin, D. M., Rooney, I. A., & Atkinson, J. P. (1996). Control of the complement system. Advances in Immunology, 61, 201–283.

    CAS  PubMed  Google Scholar 

  • Lobsiger, C. S., Boillee, S., & Cleveland, D. W. (2007). Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proceedings of the National Academy of Sciences of the United States of America, 104, 7319–7326.

    CAS  PubMed  Google Scholar 

  • Loeffler, D. A., Camp, D. M., & Bennett, D. A. (2008). Plaque complement activation and cognitive loss in Alzheimer’s disease. Journal of Neuroinflammation, 5, 9.

    PubMed  Google Scholar 

  • Loos, M., & Clas, F. (1987). Antibody-independent killing of gram-negative bacteria via the classical pathway of complement. Immunology Letters, 14, 203–208.

    CAS  PubMed  Google Scholar 

  • Mack, W. J., Ducruet, A. F., Hickman, Z. L., Garrett, M. C., Albert, E. J., Kellner, C. P., et al. (2007). Early plasma complement C3a levels correlate with functional outcome after aneurysmal subarachnoid hemorrhage. Neurosurgery, 61, 255–260; discussion 260–261.

    PubMed  Google Scholar 

  • March, D. R., Proctor, L. M., Stoermer, M. J., Sbaglia, R., Abbenante, G., Reid, R. C., et al. (2004). Potent cyclic antagonists of the complement C5a receptor on human polymorphonuclear leukocytes. Relationships between structures and activity. Molecular Pharmacology, 65, 868–879.

    CAS  PubMed  Google Scholar 

  • Marjan, J., Xie, Z., & Devine, D. V. (1994). Liposome-induced activation of the classical complement pathway does not require immunoglobulin. Biochimica et Biophysica Acta, 1192, 35–44.

    CAS  PubMed  Google Scholar 

  • Mason, J. C., Yarwood, H., Sugars, K., Morgan, B. P., Davies, K. A., & Haskard, D. O. (1999). Induction of decay-accelerating factor by cytokines or the membrane-attack complex protects vascular endothelial cells against complement deposition. Blood, 94, 1673–1682.

    CAS  PubMed  Google Scholar 

  • Mastellos, D., Germenis, A. E., & Lambris, J. D. (2005). Complement: An inflammatory pathway fulfilling multiple roles at the interface of innate immunity and development. Current Drug Targets. Inflammation and Allergy, 4, 125–127.

    CAS  PubMed  Google Scholar 

  • McGeer, P. L., Walker, D. G., Akiyama, H., Kawamata, T., Guan, A. L., Parker, C. J., et al. (1991). Detection of the membrane inhibitor of reactive lysis (CD59) in diseased neurons of Alzheimer brain. Brain Research, 544, 315–319.

    CAS  PubMed  Google Scholar 

  • Mead, R. J., Singhrao, S. K., Neal, J. W., Lassmann, H., & Morgan, B. P. (2002). The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. Journal of Immunology, 168, 458–465.

    CAS  Google Scholar 

  • Mehlhop, E., & Diamond, M. S. (2006). Protective immune responses against West Nile virus are primed by distinct complement activation pathways. Journal of Experimental Medicine, 203, 1371–1381.

    CAS  PubMed  Google Scholar 

  • Miller, A. M., & Stella, N. (2009). Microglial cell migration stimulated by ATP and C5a involve distinct molecular mechanisms: Quantification of migration by a novel near-infrared method. Glia, 57, 875–883.

    PubMed  Google Scholar 

  • Mocco, J., Wilson, D. A., Komotar, R. J., Sughrue, M. E., Coates, K., Sacco, R. L., et al. (2006). Alterations in plasma complement levels after human ischemic stroke. Neurosurgery, 59, 28–33; discussion 28–33.

    CAS  PubMed  Google Scholar 

  • Moller, T., Nolte, C., Burger, R., Verkhratsky, A., & Kettenmann, H. (1997). Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. Journal of Neuroscience, 17, 615–624.

    CAS  PubMed  Google Scholar 

  • Morgan, B. P., Griffiths, M., Khanom, H., Taylor, S. M., & Neal, J. W. (2004). Blockade of the C5a receptor fails to protect against experimental autoimmune encephalomyelitis in rats. Clinical and Experimental Immunology, 138, 430–438.

    CAS  PubMed  Google Scholar 

  • Mukherjee, P., & Pasinetti, G. M. (2000). The role of complement anaphylatoxin C5a in neurodegeneration: Implications in Alzheimer’s disease. Journal of Neuroimmunology, 105, 124–130.

    CAS  PubMed  Google Scholar 

  • Mukherjee, P., & Pasinetti, G. M. (2001). Complement anaphylatoxin C5a neuroprotects through mitogen-activated protein kinase-dependent inhibition of caspase 3. Journal of Neurochemistry, 77, 43–49.

    CAS  PubMed  Google Scholar 

  • Mukherjee, P., Thomas, S., & Pasinetti, G. M. (2008). Complement anaphylatoxin C5a neuroprotects through regulation of glutamate receptor subunit 2 in vitro and in vivo. J Neuroinflammation, 5, 5.

    PubMed  Google Scholar 

  • Muller-Ladner, U., Jones, J. L., Wetsel, R. A., Gay, S., Raine, C. S., & Barnum, S. R. (1996). Enhanced expression of chemotactic receptors in multiple sclerosis lesions. Journal of the Neurological Sciences, 144, 135–141.

    CAS  PubMed  Google Scholar 

  • Nataf, S., Davoust, N., & Barnum, S. R. (1998). Kinetics of anaphylatoxin C5a receptor expression during experimental allergic encephalomyelitis. Journal of Neuroimmunology, 91, 147–155.

    CAS  PubMed  Google Scholar 

  • Nataf, S., Levison, S. W., & Barnum, S. R. (2001). Expression of the anaphylatoxin C5a receptor in the oligodendrocyte lineage. Brain Research, 894, 321–326.

    CAS  PubMed  Google Scholar 

  • Nolte, C., Moller, T., Walter, T., & Kettenmann, H. (1996). Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience, 73, 1091–1107.

    CAS  PubMed  Google Scholar 

  • Nyakoe, N. K., Taylor, R. P., Makumi, J. N., & Waitumbi, J. N. (2009). Complement consumption in children with Plasmodium falciparum malaria. Malaria Journal, 8, 7.

    PubMed  Google Scholar 

  • O’Barr, S. A., Caguioa, J., Gruol, D., Perkins, G., Ember, J. A., Hugli, T., et al. (2001). Neuronal expression of a functional receptor for the C5a complement activation fragment. Journal of Immunology, 166, 4154–4162.

    Google Scholar 

  • O’Barr, S., Yu, J. X., & Cooper, N. R. (1998). Neuronal expression of the C5a receptor. Molecular Immunology, 35, 26.

    Google Scholar 

  • Ohno, M., Hirata, T., Enomoto, M., Araki, T., Ishimaru, H., & Takahashi, T. A. (2000). A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Molecular Immunology, 37, 407–412.

    CAS  PubMed  Google Scholar 

  • Osaka, H., McGinty, A., Hoepken, U. E., Lu, B., Gerard, C., & Pasinetti, G. M. (1999a). Expression of C5a receptor in mouse brain: Role in signal transduction and neurodegeneration. Neuroscience, 88, 1073–1082.

    CAS  PubMed  Google Scholar 

  • Osaka, H., Mukherjee, P., Aisen, P. S., & Pasinetti, G. M. (1999b). Complement-derived anaphylatoxin C5a protects against glutamate-mediated neurotoxicity. Journal of Cellular Biochemistry, 73, 303–311.

    CAS  PubMed  Google Scholar 

  • Otto, M., Hawlisch, H., Monk, P. N., Muller, M., Klos, A., Karp, C. L., et al. (2004). C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: Position 69 is the locus that determines agonism or antagonism. Journal of Biological Chemistry, 279, 142–151.

    CAS  PubMed  Google Scholar 

  • Patel, S. N., Berghout, J., Lovegrove, F. E., Ayi, K., Conroy, A., Serghides, L., et al. (2008). C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. Journal of Experimental Medicine, 205, 1133–1143.

    CAS  PubMed  Google Scholar 

  • Peitsch, M. C., Tschopp, J., Kress, A., & Isliker, H. (1988). Antibody-independent activation of the complement system by mitochondria is mediated by cardiolipin. Biochemical Journal, 249, 495–500.

    CAS  PubMed  Google Scholar 

  • Persson, M., Pekna, M., Hansson, E., & Ronnback, L. (2009). The complement-derived anaphylatoxin C5a increases microglial GLT-1 expression and glutamate uptake in a TNF-alpha-independent manner. European Journal of Neuroscience, 29, 267–274.

    PubMed  Google Scholar 

  • Pisalyaput, K., & Tenner, A. J. (2008). Complement component C1q inhibits beta-amyloid- and serum amyloid P-induced neurotoxicity via caspase- and calpain-independent mechanisms. Journal of Neurochemistry, 104, 696–707.

    CAS  PubMed  Google Scholar 

  • Podack, E. R., Tschoop, J., & Muller-Eberhard, H. J. (1982). Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b–8 assembly. Journal of Experimental Medicine, 156, 268–282.

    CAS  PubMed  Google Scholar 

  • Rahpeymai, Y., Hietala, M. A., Wilhelmsson, U., Fotheringham, A., Davies, I., Nilsson, A. K., et al. (2006). Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO Journal, 25, 1364–1374.

    CAS  PubMed  Google Scholar 

  • Reiman, R., Campos Torres, A., Martin, B. K., Ting, J. P., Campbell, I. L., & Barnum, S. R. (2005). Expression of C5a in the brain does not exacerbate experimental autoimmune encephalomyelitis. Neuroscience Letters, 390, 134–138.

    CAS  PubMed  Google Scholar 

  • Reiman, R., Gerard, C., Campbell, I. L., & Barnum, S. R. (2002). Disruption of the C5a receptor gene fails to protect against experimental allergic encephalomyelitis. European Journal of Immunology, 32, 1157–1163.

    CAS  PubMed  Google Scholar 

  • Ricklin, D., & Lambris, J. D. (2007). Complement-targeted therapeutics. Nature Biotechnology, 25, 1265–1275.

    CAS  PubMed  Google Scholar 

  • Rittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huber-Lang, M., Mackay, C. R., et al. (2008). Functional roles for C5a receptors in sepsis. Nature Medicine, 14, 551–557.

    CAS  PubMed  Google Scholar 

  • Roestenberg, M., McCall, M., Mollnes, T. E., van Deuren, M., Sprong, T., Klasen, I., et al. (2007). Complement activation in experimental human malaria infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101, 643–649.

    CAS  PubMed  Google Scholar 

  • Rother, R. P., Rollins, S. A., Mojcik, C. F., Brodsky, R. A., & Bell, L. (2007). Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nature Biotechnology, 25, 1256–1264.

    CAS  PubMed  Google Scholar 

  • Rus, H., Cudrici, C., & Niculescu, F. (2005). C5b–9 complement complex in autoimmune demyelination and multiple sclerosis: Dual role in neuroinflammation and neuroprotection. Annals of Medicine, 37, 97–104.

    CAS  PubMed  Google Scholar 

  • Sayah, S., Ischenko, A. M., Zhakhov, A., Bonnard, A. S., & Fontaine, M. (1999). Expression of cytokines by human astrocytomas following stimulation by C3a and C5a anaphylatoxins: Specific increase in interleukin-6 mRNA expression. Journal of Neurochemistry, 72, 2426–2436.

    CAS  PubMed  Google Scholar 

  • Schieferdecker, H. L., Rothermel, E., Timmermann, A., Gotze, O., & Jungermann, K. (1997). Anaphylatoxin C5a receptor mRNA is strongly expressed in Kupffer and stellate cells and weakly in sinusoidal endothelial cells but not in hepatocytes of normal rat liver. FEBS Letters, 406, 305–309.

    CAS  PubMed  Google Scholar 

  • Scolding, N. J., Morgan, B. P., & Compston, D. A. (1998). The expression of complement regulatory proteins by adult human oligodendrocytes. Journal of Neuroimmunology, 84, 69–75.

    CAS  PubMed  Google Scholar 

  • Sewell, D. L., Nacewicz, B., Liu, F., Macvilay, S., Erdei, A., Lambris, J. D., et al. (2004). Complement C3 and C5 play critical roles in traumatic brain cryoinjury: Blocking effects on neutrophil extravasation by C5a receptor antagonist. Journal of Neuroimmunology, 155, 55–63.

    CAS  PubMed  Google Scholar 

  • Shen, Y., Lue, L., Yang, L., Roher, A., Kuo, Y., Strohmeyer, R., et al. (2001). Complement activation by neurofibrillary tangles in Alzheimer’s disease. Neuroscience Letters, 305, 165–168.

    CAS  PubMed  Google Scholar 

  • Singhrao, S. K., Neal, J. W., Morgan, B. P., & Gasque, P. (1999). Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Experimental Neurology, 159, 362–376.

    CAS  PubMed  Google Scholar 

  • Singhrao, S. K., Neal, J. W., Rushmere, N. K., Morgan, B. P., & Gasque, P. (2000). Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis. The American Journal of Pathology, 157, 905–918.

    CAS  PubMed  Google Scholar 

  • Stahel, P. F., & Barnum, S. R. (1997). Bacterial meningitis: Complement gene expression in the central nervous system. Immunopharmacology, 38, 65–72.

    CAS  PubMed  Google Scholar 

  • Stahel, P. F., Frei, K., Eugster, H. P., Fontana, A., Hummel, K. M., Wetsel, R. A., et al. (1997a). TNF-alpha-mediated expression of the receptor for anaphylatoxin C5a on neurons in experimental Listeria meningoencephalitis. Journal of Immunology, 159, 861–869.

    CAS  Google Scholar 

  • Stahel, P. F., Kariya, K., Shohami, E., Barnum, S. R., Eugster, H., Trentz, O., et al. (2000). Intracerebral complement C5a receptor (CD88) expression is regulated by TNF and lymphotoxin-alpha following closed head injury in mice. Journal of Neuroimmunology, 109, 164–172.

    CAS  PubMed  Google Scholar 

  • Stahel, P. F., Kossmann, T., Morganti-Kossmann, M. C., Hans, V. H., & Barnum, S. R. (1997b). Experimental diffuse axonal injury induces enhanced neuronal C5a receptor mRNA expression in rats. Molecular Brain Research, 50, 205–212.

    CAS  PubMed  Google Scholar 

  • Stevens, B., Allen, N. J., Vazquez, L. E., Howell, G. R., Christopherson, K. S., Nouri, N., et al. (2007). The classical complement cascade mediates CNS synapse elimination. Cell, 131, 1164–1178.

    CAS  PubMed  Google Scholar 

  • Storrs, S. B., Kolb, W. P., & Olson, M. S. (1983). C1q binding and C1 activation by various isolated cellular membranes. Journal of Immunology, 131, 416–422.

    CAS  Google Scholar 

  • Tenner, A. J., Ziccardi, R. J., & Cooper, N. R. (1984). Antibody-independent C1 activation by E. coli. Journal of Immunology, 133, 886–891.

    CAS  Google Scholar 

  • Thomas, A., Gasque, P., Vaudry, D., Gonzalez, B., & Fontaine, M. (2000). Expression of a complete and functional complement system by human neuronal cells in vitro. International Immunology, 12, 1015–1023.

    CAS  PubMed  Google Scholar 

  • Van Beek, J., Bernaudin, M., Petit, E., Gasque, P., Nouvelot, A., MacKenzie, E. T., et al. (2000). Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Experimental Neurology, 161, 373–382.

    PubMed  Google Scholar 

  • Van Beek, J., Elward, K., & Gasque, P. (2003). Activation of complement in the central nervous system: Roles in neurodegeneration and neuroprotection. Annals of the New York Academy of Sciences, 992, 56–71.

    PubMed  Google Scholar 

  • Van Beek, J., van Meurs, M., t Hart, B. A., Brok, H. P., Neal, J. W., Chatagner, A., et al. (2005). Decay-accelerating factor (CD55) is expressed by neurons in response to chronic but not acute autoimmune central nervous system inflammation associated with complement activation. Journal of Immunology, 174, 2353–2365.

    Google Scholar 

  • Veerhuis, R., Janssen, I., De Groot, C. J., Van Muiswinkel, F. L., Hack, C. E., & Eikelenboom, P. (1999). Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Experimental Neurology, 160, 289–299.

    Google Scholar 

  • Veerhuis, R., Janssen, I., Hoozemans, J. J., De Groot, C. J., Hack, C. E., & Eikelenboom, P. (1998). Complement C1-inhibitor expression in Alzheimer’s disease. Acta Neuropathologica, 96, 287–296.

    CAS  PubMed  Google Scholar 

  • Vergunst, C. E., Gerlag, D. M., Dinant, H., Schulz, L., Vinkenoog, M., Smeets, T. J., et al. (2007). Blocking the receptor for C5a in patients with rheumatoid arthritis does not reduce synovial inflammation. Rheumatology (Oxford), 46, 1773–1778.

    Google Scholar 

  • Walker, D. G., Kim, S. U., & McGeer, P. L. (1995a). Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. Journal of Neuroscience Research, 40, 478–493.

    CAS  PubMed  Google Scholar 

  • Walker, D. G., Kim, S. U., & McGeer, P. L. (1998). Expression of complement C4 and C9 genes by human astrocytes. Brain Research, 809, 31–38.

    CAS  PubMed  Google Scholar 

  • Walker, D. G., & McGeer, P. L. (1992). Complement gene expression in human brain: comparison between normal and Alzheimer disease cases. Molecular Brain Research, 14, 109–116.

    CAS  PubMed  Google Scholar 

  • Walker, D. G., & McGeer, P. L. (1993). Complement gene expression in neuroblastoma and astrocytoma cell lines of human origin. Neuroscience Letters, 157, 99–102.

    CAS  PubMed  Google Scholar 

  • Walker, D. G., Yasuhara, O., Patston, P. A., McGeer, E. G., & McGeer, P. L. (1995b). Complement C1 inhibitor is produced by brain tissue and is cleaved in Alzheimer disease. Brain Research, 675, 75–82.

    CAS  PubMed  Google Scholar 

  • Webster, S., Lue, L. F., Brachova, L., Tenner, A. J., McGeer, P. L., Terai, K., et al. (1997). Molecular and cellular characterization of the membrane attack complex, C5b–9, in Alzheimer’s disease. Neurobiology of Aging, 18, 415–421.

    CAS  PubMed  Google Scholar 

  • Woodruff, T. M., Costantini, K. J., Crane, J. W., Atkin, J. D., Monk, P. N., Taylor, S. M., et al. (2008a). The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. Journal of Immunology, 181, 8727–8734.

    CAS  Google Scholar 

  • Woodruff, T. M., Costantini, K. J., Taylor, S. M., & Noakes, P. G. (2008b). Role of complement in motor neuron disease: Animal models and therapeutic potential of complement inhibitors. Advances in Experimental Medicine and Biology, 632, 143–158.

    PubMed  Google Scholar 

  • Woodruff, T. M., Crane, J. W., Proctor, L. M., Buller, K. M., Shek, A. B., de Vos, K., et al. (2006a). Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB Journal, 20, 1407–1417.

    CAS  PubMed  Google Scholar 

  • Woodruff, T. M., Pollitt, S., Proctor, L. M., Stocks, S. Z., Manthey, H. D., Williams, H. M., et al. (2005). Increased potency of a novel complement factor 5a receptor antagonist in a rat model of inflammatory bowel disease. Journal of Pharmacology and Experimental Therapeutics, 314, 811–817.

    CAS  PubMed  Google Scholar 

  • Woodruff, T. M., Proctor, L. M., Strachan, A. J., & Taylor, S. M. (2006b). Complement factor 5a as a therapeutic target. Drug Future, 31, 325–334.

    CAS  Google Scholar 

  • Woodruff, T. M., Strachan, A. J., Dryburgh, N., Shiels, I. A., Reid, R. C., Fairlie, D. P., et al. (2002). Antiarthritic activity of an orally active C5a receptor antagonist against antigen-induced monarticular arthritis in the rat. Arthritis and Rheumatism, 46, 2476–2485.

    CAS  PubMed  Google Scholar 

  • Xi, G., Hua, Y., Keep, R. F., Younger, J. G., & Hoff, J. T. (2001). Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke, 32, 162–167.

    CAS  PubMed  Google Scholar 

  • Yang, C., Jones, J. L., & Barnum, S. R. (1993). Expression of decay-accelerating factor (CD55), membrane cofactor protein (CD46) and CD59 in the human astroglioma cell line, D54-MG, and primary rat astrocytes. Journal of Neuroimmunology, 47, 123–132.

    CAS  PubMed  Google Scholar 

  • Yao, J., Harvath, L., Gilbert, D. L., & Colton, C. A. (1990). Chemotaxis by a CNS macrophage, the microglia. Journal of Neuroscience Research, 27, 36–42.

    CAS  PubMed  Google Scholar 

  • Zajicek, J., Wing, M., Skepper, J., & Compston, A. (1995). Human oligodendrocytes are not sensitive to complement. A study of CD59 expression in the human central nervous system. Laboratory Investigation, 73, 128–138.

    CAS  PubMed  Google Scholar 

  • Zhou, J., Fonseca, M. I., Pisalyaput, K., & Tenner, A. J. (2008). Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. Journal of Neurochemistry, 106, 2080–2092.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the National Health and Medical Research Council of Australia (Project Grant #455856 to P. G. Noakes and S. M. Taylor and Career Development Award fellowship #519700 to T. M. Woodruff), and the Motor Neuron Disease Research Institute of Australia. We also thank Dr. M. L. Manchadi for editorial assistance, and Ms. Marianna Shek for graphical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trent M. Woodruff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodruff, T.M., Ager, R.R., Tenner, A.J. et al. The Role of the Complement System and the Activation Fragment C5a in the Central Nervous System. Neuromol Med 12, 179–192 (2010). https://doi.org/10.1007/s12017-009-8085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8085-y

Keywords

Navigation