Skip to main content

Advertisement

Log in

Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Mucopolysaccharidosis type I is one of the most frequent lysosomal storage diseases. It has a high morbidity and mortality, causing in many cases severe neurological and somatic damage in the first years of life. Although the clinical phenotypes have been described for decades, and the enzymatic deficiency and many of the mutations that cause this disease are well known, the underlying pathophysiological mechanisms that lead to its development are not completely understood. In this review we describe and discuss the different pathogenic mechanisms currently proposed for this disease regarding its neurological damage. Deficiency in the lysosomal degradation of heparan sulfate and dermatan sulfate, as well as its primary accumulation, may disrupt a variety of physiological and biochemical processes: the intracellular and extracellular homeostasis of these macromolecules, the pathways related to gangliosides metabolism, mechanisms related to the activation of inflammation, receptor-mediated signaling, oxidative stress and permeability of the lysosomal membrane, as well as alterations in intracellular ionic homeostasis and the endosomal pathway. Many of the pathogenic mechanisms proposed for mucopolysaccharidosis type I are also present in other lysosomal storage diseases with neurological implications. Results from the use of methods that allow the analysis of multiple genes and proteins, in both patients and animal models, will shed light on the role of each of these mechanisms and their combination in the development of different phenotypes due to the same deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldenhoven M, Boelens JJ, de Koning TJ (2008) The clinical outcome of Hurler syndrome after stem cell transplantation. Biol Blood Marrow Transplant 14:485–498

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer C, Werner S (2002) Fibroblast growth factors and neuroprotection. Adv Exp Med Biol 513:335–351

    Article  PubMed  CAS  Google Scholar 

  • Ashworth JL, Biswas S, Wraith E, Lloyd IC (2006) Mucopolysaccharidoses and the eye. Surv Ophthalmol 51:1–17

    Article  PubMed  Google Scholar 

  • Ausseil J, Desmaris N, Bigou S, Attali R, Corbineau S, Vitry S, Parent M, Cheillan D, Fuller M, Maire I, Vanier MT, Heard JM (2008) Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice. PLoS One 3:e2296

    Article  PubMed  Google Scholar 

  • Baehner F, Schmiedeskamp C, Krummenauer F, Miebach E, Bajbouj M, Whybra C, Kohlschütter A, Kampmann C, Beck M (2005) Cumulative incidence rates of the mucopolysaccharidoses in Germany. J Inherit Metab Dis 28:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Ballabio A, Gieselmann V (2009) Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta 1793:684–696

    Article  PubMed  CAS  Google Scholar 

  • Baumkötter J, Cantz M (1983) Decreased ganglioside neuraminidase activity in fibroblasts from mucopolysaccharidosis patients. Inhibition of the activity in vitro by sulfated glycosaminoglycans and other compounds. Biochim Biophys Acta 761:163–170

    Article  PubMed  Google Scholar 

  • Ben Turkia H, Tebib N, Azzouz H, Abdelmoula MS, Ben Chehida A, Chemli J, Monastiri K, Chaabouni M, Sanhagi H, Zouari B, Kaabachi N, Ben Dridi MF (2009) Incidence of mucopolysaccharidoses in Tunisia. Tunis Med 87:782–785

    PubMed  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Boor R, Miebach E, Brühl K, Beck M (2000) Abnormal somatosensory evoked potentials indicate compressive cervical myelopathy in mucopolysaccharidoses. Neuropediatrics 31:122–127

    Article  PubMed  CAS  Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    Article  PubMed  CAS  Google Scholar 

  • Castaneda JA, Lim MJ, Cooper JD, Pearce DA (2008) Immune system irregularities in lysosomal storage disorders. Acta Neuropathol 115:159–174

    Article  PubMed  CAS  Google Scholar 

  • Clarke LA (2008) The mucopolysaccharidoses: a success of molecular medicine. Expert Rev Mol Med 10:1–18

    Article  Google Scholar 

  • de Ru MH, Boelens JJ, Das AM, Jones SA, van der Lee JH, Mahlaoui N, Mengel E, Offringa M, O’Meara A, Parini R, Rovelli A, Sykora KW, Valayannopoulos V, Vellodi A, Wynn RF, Wijburg FA (2011) Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure. Orphanet J Rare Dis 6:55

    Article  PubMed  Google Scholar 

  • Desmaris N, Verot L, Puech JP, Caillaud C, Vanier MT, Heard JM (2004) Prevention of neuropathology in the mouse model of Hurler syndrome. Ann Neurol 56:68–76

    Article  PubMed  CAS  Google Scholar 

  • Forsten-Williams K, Chu CL, Fannon M, Buczek-Thomas JA, Nugent MA (2008) Control of growth factor networks by heparan sulfate proteoglycans. Ann Biomed Eng 36:2134–2148

    Article  PubMed  Google Scholar 

  • Gabrielli O, Polonara G, Regnicolo L, Petroni V, Scarabino T, Coppa GV, Salvolini U (2004) Correlation between cerebral MRI abnormalities and mental retardation in patients with mucopolysaccharidoses. Am J Med Genet A 125A:224–231

    Article  PubMed  Google Scholar 

  • Gallagher JT (2006) Multiprotein signalling complexes: regional assembly on heparin sulphate. Biochem Soc Trans 34:438–441

    Article  PubMed  CAS  Google Scholar 

  • Giussani C, Miori S, Sganzerla EP (2010) Neurological complications and their management in Mucopolysaccharidosis. In: Parini R, Andria G (eds) Lysosomal storage diseases: early diagnosis and new treatments. John Libbey Eurotext, Montrouge (France), pp 107–120

    Google Scholar 

  • Hochuli M, Wüthrich K, Steinmann B (2003) Two-dimensional NMR spectroscopy of urinary glycosaminoglycans from patients with different mucopolysaccharidoses. NMR Biomed 16:224–236

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Mayatepek E (2005) Neurological manifestations in lysosomal storage disorders-from pathology to first therapeutic possibilities. Neuropediatrics 36:285–289

    Article  PubMed  CAS  Google Scholar 

  • Holley RJ, Deligny A, Wei W, Watson HA, Niñonuevo MR, Dagälv A, Leary JA, Bigger BW, Kjellén L, Merry CL (2011) Mucopolysaccharidosis type I, unique structure of accumulated heparan sulfate and increased N-sulfotransferase activity in mice lacking α-l-iduronidase. J Biol Chem 286:37515–37524

    Article  PubMed  CAS  Google Scholar 

  • Jentsch TJ (2007) Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J Physiol 578:633–640

    Article  PubMed  CAS  Google Scholar 

  • Jmoudiak M, Futerman AH (2005) Gaucher disease: pathological mechanisms and modern management. Br J Haematol 129:178–188

    Article  PubMed  CAS  Google Scholar 

  • Johnson GB, Brunn GJ, Kodaira Y, Platt JL (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 168:5233–5239

    PubMed  CAS  Google Scholar 

  • Khan SA, Nelson MS, Pan C, Gaffney PM, Gupta P (2008) Endogenous heparan sulphate and heparin modulate bone morphogenetic protein-4 (BMP-4) signalling and activity. Am J Physiol Cell Physiol 294:C1387–C1397

    Article  PubMed  CAS  Google Scholar 

  • Krufka A, Guimond S, Rapraeger AC (1996) Two hierarchies of FGF-2 signaling in heparin: mitogenic stimulation and high-affinity binding/receptor transphosphorylation. Biochemistry 35:11131–11141

    Article  PubMed  CAS  Google Scholar 

  • Kuo WJ, Digman MA, Lander AD (2010) Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization. Mol Biol Cell 21:4028–4041

    Article  PubMed  CAS  Google Scholar 

  • Li HH, Zhao HZ, Neufeld EF, Cai Y, Gómez-Pinilla F (2002) Attenuated plasticity in neurons and astrocytes in the mouse model of Sanfilippo syndrome type B. J Neurosci Res 69:30–38

    Article  PubMed  CAS  Google Scholar 

  • Liour SS, Jones MZ, Suzuki M, Bieberich E, Yu RK (2001) Metabolic studies of glycosphingolipid accumulation in mucopolysaccharidosis IIID. Mol Genet Metab 72:239–247

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xu L, Hennig AK, Kovacs A, Fu A, Chung S, Lee D, Wang B, Herati RS, Mosinger Ogilvie J, Cai SR, Parker Ponder K (2005) Liver-directed neonatal gene therapy prevents cardiac, bone, ear, and eye disease in mucopolysaccharidosis I mice. Mol Ther 11:35–47

    Article  PubMed  CAS  Google Scholar 

  • Lowry RB, Applegarth DA, Toone JR, MacDonald E, Thunem NY (1990) An update on the frequency of mucopolysaccharide syndromes in British Columbia. Hum Genet 85:389–390

    Article  PubMed  CAS  Google Scholar 

  • Malm G, Lund AM, Månsson JE, Heiberg A (2008) Mucopolysaccharidoses in the Scandinavian countries: incidence and prevalence. Acta Paediatr 97:1577–1581

    Article  PubMed  Google Scholar 

  • Matheus MG, Castillo M, Smith JK, Armao D, Towle D, Muenzer J (2004) Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation. Neuroradiology 46:666–672

    Article  PubMed  Google Scholar 

  • McGlynn R, Dobrenis K, Walkley SU (2004) Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 480:415–426

    Article  PubMed  CAS  Google Scholar 

  • Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281:249–254

    Article  PubMed  CAS  Google Scholar 

  • Menéndez-Sainz C, González-García S, Peña-Sánchez M, Zaldívar-Muñoz C, González-Quevedo A (2009) Mucopolisacaridosis: diagnóstico enzimático de 20 años en Cuba. Rev Neurol 49:458–462

    PubMed  Google Scholar 

  • Miyazono K, Kusanagi K, Inoue H (2001) Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol 187:265–276

    Article  PubMed  CAS  Google Scholar 

  • Moore D, Connock MJ, Wraith E, Lavery C (2008) The prevalence of and survival in Mucopolysaccharidosis I: Hurler, Hurler-Scheie and Scheie syndromes in the UK. Orphanet J Rare Dis 3:24

    Article  PubMed  Google Scholar 

  • Mulloy B, Rider CC (2006) Cytokines and proteoglycans: an introductory overview. Biochem Soc Trans 34:409–413

    Article  PubMed  CAS  Google Scholar 

  • Neufeld EF, Muenzer J (2001) The mucopolysaccharidoses. In: Scriver C, Beaudet A, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw Hill, New York, pp 3421–3452

    Google Scholar 

  • Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci U S A 100:1902–1907

    Article  PubMed  CAS  Google Scholar 

  • Pan C, Nelson MS, Reyes M, Koodie L, Brazil JJ, Stephenson EJ, Zhao RC, Peters C, Selleck SB, Stringer SE, Gupta P (2005) Functional abnormalities of heparan sulfate in mucopolysaccharidosis-I are associated with defective biologic activity of FGF-2 on human multipotent progenitor cells. Blood 106:1956–1964

    Article  PubMed  CAS  Google Scholar 

  • Parish CR (2006) The role of heparan sulphate in inflammation. Nat Rev Immunol 6:633–643

    Article  PubMed  CAS  Google Scholar 

  • Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 25:102–115

    Article  CAS  Google Scholar 

  • Pereira VG, Martins AM, Micheletti C, D’Almeida V (2008) Mutational and oxidative stress analysis in patients with mucopolysaccharidosis type I undergoing enzyme replacement therapy. Clin Chim Acta 387:75–79

    Article  PubMed  CAS  Google Scholar 

  • Pereira VG, Gazarini ML, Rodrigues LC, da Silva FH, Han SW, Martins AM, Tersariol IL, D’Almeida V (2010) Evidence of lysosomal membrane permeabilization in mucopolysaccharidosis type I: rupture of calcium and proton homeostasis. J Cell Physiol 223:335–342

    PubMed  CAS  Google Scholar 

  • Powell AK, Fernig DG, Turnbull JE (2002) Fibroblast growth factor receptors 1 and 2 interact differently with heparin/heparan sulfate. Implications for dynamic assembly of a ternary signaling complex. J Biol Chem 277:28554–28563

    Article  PubMed  CAS  Google Scholar 

  • Prinetti A, Prioni S, Chiricozzi E, Schuchman EH, Chigorno V, Sonnino S (2011) Secondary alterations of sphingolipid metabolism in lysosomal storage diseases. Neurochem Res 36:1654–1668

    Article  PubMed  CAS  Google Scholar 

  • Pryor PR, Mullock BM, Bright NA, Gray SR, Luzio JP (2000) The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol 149:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Pye DA, Vives RR, Turnbull JE, Hyde P, Gallagher JT (1998) Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J Biol Chem 273:22936–22942

    Article  PubMed  CAS  Google Scholar 

  • Reolon GK, Reinke A, de Oliveira MR, Braga LM, Camassola M, Andrades ME, Moreira JC, Nardi NB, Roesler R, Dal-Pizzol F (2009) Alterations in oxidative markers in the cerebellum and peripheral organs in MPS I mice. Cell Mol Neurobiol 29:443–448

    Article  PubMed  CAS  Google Scholar 

  • Resnick JM, Whitley CB, Leonard AS, Krivit W, Snover DC (1994) Light and electron microscopic features of the liver in mucopolysaccharidosis. Hum Pathol 25:276–286

    Article  PubMed  CAS  Google Scholar 

  • Schumacher RG, Brzezinska R, Schulze-Frenking G, Pitz S (2008) Sonographic ocular findings in patients with mucopolysaccharidoses I, II and VI. Pediatr Radiol 38:543–550

    Article  PubMed  Google Scholar 

  • Simonaro CM, D’Angelo M, Haskins ME, Schuchman EH (2005) Joint and bone disease in mucopolysaccharidoses VI and VII: identification of new therapeutic targets and biomarkers using animal models. Pediatr Res 57:701–707

    Article  PubMed  CAS  Google Scholar 

  • Simonaro CM, D’Angelo M, He X, Eliyahu E, Shtraizent N, Haskins ME, Schuchman EH (2008) Mechanism of glycosaminoglycan-mediated bone and joint disease: implications for the mucopolysaccharidoses and other connective tissue diseases. Am J Pathol 172:112–122

    Article  PubMed  CAS  Google Scholar 

  • Surh YJ, Packer L (2005) Oxidative stress, inflammation, and health. Taylor and Francis, London

    Book  Google Scholar 

  • Takada T, Katagiri T, Ifuku M, Morimura N, Kobayashi M, Hasegawa K, Ogamo A, Kamijo R (2003) Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins. J Biol Chem 278:43229–43235

    Article  PubMed  CAS  Google Scholar 

  • Terlato NJ, Cox GF (2003) Can mucopolysaccharidosis type I disease severity be predicted based on a patient’s genotype? A comprehensive review of the literature. Genet Med 5:286–294

    Article  PubMed  CAS  Google Scholar 

  • Terman A, Kurz T, Gustafsson B, Brunk UT (2006) Lysosomal labilization. IUBMB Life 58:531–539

    Article  PubMed  CAS  Google Scholar 

  • Tomatsu S, Gutierrez MA, Ishimaru T, Peña OM, Montaño AM, Maeda H, Velez-Castrillon S, Nishioka T, Fachel AA, Cooper A, Thornley M, Wraith E, Barrera LA, Laybauer LS, Giugliani R, Schwartz IV, Frenking GS, Beck M, Kircher SG, Paschke E, Yamaguchi S, Ullrich K, Isogai K, Suzuki Y, Orii T, Noguchi A (2005) Heparan sulfate levels in mucopolysaccharidoses and mucolipidoses. J Inherit Metab Dis 28:743–757

    Article  PubMed  CAS  Google Scholar 

  • Tomatsu S, Montaño AM, Oguma T, Dung VC, Oikawa H, Gutiérrez ML, Yamaguchi S, Suzuki Y, Fukushi M, Barrera LA, Kida K, Kubota M, Orii T (2010) Validation of disaccharide compositions derived from dermatan sulfate and heparan sulfate in mucopolysaccharidoses and mucolipidoses II and III by tandem mass spectrometry. Mol Genet Metab 99:124–131

    Article  PubMed  CAS  Google Scholar 

  • Villani GR, Gargiulo N, Faraonio R, Castaldo S, Gonzalez Y, Reyero E, Di Natale P (2007) Cytokines, neurotrophins, and oxidative stress in brain disease from mucopolysaccharidosis IIIB. J Neurosci Res 85:612–622

    Article  PubMed  CAS  Google Scholar 

  • Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285:20423–20427

    Article  PubMed  CAS  Google Scholar 

  • Walkley SU (2003) Neurobiology and cellular pathogenesis of glycolipid storage diseases. Philos Trans R Soc Lond B 358:893–904

    Article  CAS  Google Scholar 

  • Walkley SU (2004a) Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 15:433–444

    Article  PubMed  CAS  Google Scholar 

  • Walkley SU (2004b) Pathogenic cascades and brain dysfunction. In: Platt FM, Walkley SU (eds) Lysosomal disorders of the brain. Oxford University Press, Oxford, pp 32–49

    Google Scholar 

  • Walkley SU (2009) Pathogenic cascades in lysosomal disease-Why so complex? J Inherit Metab Dis 32:181–189

    Article  PubMed  CAS  Google Scholar 

  • Walkley SU (2007) Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome. Acta Paediatr Suppl 96:26–32

    Article  PubMed  Google Scholar 

  • Walkley SU, Zervas M, Wiseman S (2000) Gangliosides as modulators of dendritogenesis in normal and storage disease-affected pyramidal neurons. Cereb Cortex 10:1028–1037

    Article  PubMed  CAS  Google Scholar 

  • Walton RM, Wolfe JH (2007) Abnormalities in neural progenitor cells in a dog model of lysosomal storage disease. J Neuropathol Exp Neurol 66:760–769

    Article  PubMed  Google Scholar 

  • Wang D, Shukla C, Liu X, Schoeb TR, Clarke LA, Bedwell DM, Keeling KM (2010) Characterization of an MPS I-H knock-in mouse that carries a nonsense mutation analogous to the human IDUA-W402X mutation. Mol Genet Metab 99:62–71

    Article  PubMed  CAS  Google Scholar 

  • Yuen A, Dowling G, Johnstone B, Kornberg A, Coombs C (2007) Carpal tunnel syndrome in children with mucopolysaccharidoses. J Child Neurol 22:260–263

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derbis Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, D., Monaga, M. Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms. Metab Brain Dis 27, 121–129 (2012). https://doi.org/10.1007/s11011-012-9302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9302-1

Keywords

Navigation