Skip to main content
Log in

Ameliorative effects of supplemental folinic acid on Lamotrigine-induced fetal malformations in the mouse

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Data from our previous work indicate that Lamotrigine (LTG) is teratogenic in the mouse. In the present study, we attempted to determine the possible protective effects of exogenous folate on LTG-induced fetal anomalies in TO mouse. Experiment I entailed administering 4 mg/kg of folinic acid (FA) and (25 mg/kg) of LTG intraperitoneally three times on gestation day (GD) 8 to a group of mice; other groups were a group that received similar volumes of saline, a group that received LTG and Saline, a group that received FA and saline. Experiment 2 involved administering groups of mice with daily 3 doses FA (or proportionate volume of saline) on GD 5 through 10 and either 3 doses of saline on GD8, or 3 doses of LTG on GD8. Maternal plasma concentrations of FA, vitamin B12 and homocysteine were determined an hour after the last injection from one-half of all animals. The other half were allowed to go to term (GD18) when they were euthanized and their fetuses were examined for visceral and skeletal malformations. A high incidence of resorption, abortion, embryolethality, congenital malformations, and intrauterine growth restriction (IUGR), was observed in the LTG-treated group. Folic acid and B12 levels were decreased and homocysteine concentration increased significantly in LTG groups. Mice receiving LTG with FA had normal levels of folate, Vitamin B12 and homocysteine levels, and the fetuses had fewer birth defects similar to the controls which were given saline only. Supplemental FA ameliorated to a great extent the LTG-induced embryonic resorption and malformations and restored the FA status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holmes LB, Hernandez-Diaz S (2012) Newer anticonvulsants: LTG, topiramate and gabapentin. Birth Defects Res A 94(8):599–606

    Article  CAS  Google Scholar 

  2. Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Sabers A, Perucca E, Vajda F (2011) Dose-dependent risk of malformations with anti-epileptic drugs: an analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol 10(7):609–617

    Article  PubMed  CAS  Google Scholar 

  3. Morrell MJ (2002) Folic acid and epilepsy. Epilepsy Curr 2(2):31–34

    Article  PubMed  PubMed Central  Google Scholar 

  4. Linnebank M, Moskau S, Semmier A, Widman G, Stoffel-Wagner B, Weller M, Elger CE (2011) Antiepileptic drugs interact with folate and vitamin B12 serum levels. Ann Neurol 69(2):352–359

    Article  PubMed  CAS  Google Scholar 

  5. Pittschieler S, Brezinka C, Jahn B, Trinka E, Unterberger I, Dobesberger J, Walser G, Auckenthaler A, Embacher N, Bauer G, Luef G (2008) Spontaneous abortion and the prophylactic effect of folic acid supplementation in epileptic women undergoing antiepileptic therapy. J Neurol 255(12):1926–1931

    Article  PubMed  CAS  Google Scholar 

  6. Meador KJ, Baker GA, Browning N, Cohen MJ, Clayton-Smith J, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, Privitera M, Loring DW, NEAD Study Group (2011) Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age. Brain 134(Pt 2): 396–404

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lindhout D, Omtzigt JGC (1994) Teratogenic effects of antiepileptic drugs: Implications for the management of epilepsy in women of childbearing age. Epilepsia 35(Suppl 4):S19-S28

    Google Scholar 

  8. Kaaja E, Kaaja R, Hiilesmaa V (2003) Major malformations in offspring of women with epilepsy. Neurology 60(4):575–579

    Article  PubMed  Google Scholar 

  9. Cunnington M, Tennis P (2005) LTG and the risk of malformations in pregnancy. Neurology 64:955–960

    Article  PubMed  CAS  Google Scholar 

  10. Ornoy A (2009) Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol 28(1):1–10

    Article  PubMed  CAS  Google Scholar 

  11. Vajda FJ, Graham J, Roten A, Lander CM, O’Brien TJ, Eadie M (2012) Teratogenicity of the newer antiepileptic drugs-the Australian experience. J Clin Sci 19(1):57–59

    CAS  Google Scholar 

  12. Nguyen HT, Sharma V, McIntyre RS (2009) Teratogenesis associated with antibipolar agents. Adv Ther 26(3):281–294

    Article  PubMed  CAS  Google Scholar 

  13. Hill DS, Wlodarczyk BJ, Palacios AM, Finnell RH (2010) Teratogenic effects of antiepileptic drugs. Expert Rev Neurother 10(6):943–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wild C, Lehner P, Reiselhuber S, Schiller-Frühwirth I (2010) Prevention of neural tube defects: regional policies in folic acid enrichment and supplementation. Gesundheitswesen 72(12):875–879

    Article  PubMed  CAS  Google Scholar 

  15. Meijer WM, de Walle HE (2005) Differences in folic-acid policy and the prevalence of neural-tube defects in Europe; recommendations for food fortification in a EUROCAT report. Ned Tijdschr Geneeskd 149(46):2561–2564

    PubMed  CAS  Google Scholar 

  16. Wilson RD, Davies G, Désilets V, Reid GJ, Summers A, Wyatt P, Young D (2003) The use of folic acid for the prevention of neural tube defects and other congenital anomalies. J Obstet Gynaecol Can 25(11):959–965

    Article  PubMed  Google Scholar 

  17. Padmanabhan R, Abdulrazzaq YM, Bastaki SM, Shafiullah M, Chandranath SI (2003) Experimental studies on reproductive toxicologic effects of LTG in mice. Birth Defects Res B 68:428–438

    Article  CAS  Google Scholar 

  18. Padmanabhan R, Shafiullah MM (2003) Amelioration of sodium valproate-induced neural tube defects in mouse fetuses by maternal folic acid supplementation during gestation. Congenit Anom 43(1):29–40

    Article  CAS  Google Scholar 

  19. Quattrini A, Ortenzi A, Paggi A et al (1996) LTG and pregnancy [Letter]. Ital J Neurosci 17:441

    CAS  Google Scholar 

  20. Rambeck B, Kurlemann G, Stodieck SRG et al (1997) Concentrations of LTG in a mother on LTG treatment and her newborn child. Eur J Clin Pharmacol 51:481–484

    Article  PubMed  CAS  Google Scholar 

  21. Tomson T, Öhman I, Vitols S (1997) LTG in pregnancy and lactation: a case report. Epilepsia 38:1039–1041

    Article  PubMed  CAS  Google Scholar 

  22. Abdulrazzaq YM, Bastaki SMA, Padmanabhan R (1997) Teratogenic effects of vigabatrin in the TO mouse fetuses. Teratology 55:165–176

    Article  PubMed  CAS  Google Scholar 

  23. Abdulrazzaq YM, Padmanabhan R, Bastaki SMA, Ibrahim A, Bener A (2001) Placental transfer of vigabatrin (γ-vinyl GABA) and its effect on concentrations of amino acids in the embryo of TO mice. Teratology 63:127–133

    Article  PubMed  CAS  Google Scholar 

  24. İspir E, Serdar MA, Ozgurtas T, Gulbahar O, Akın KO, Yesildal F, Kurt İ (2015) Comparison of four automated serum vitamin B12 assays. Clin Chem Lab Med 53(8):1205–1213

    Article  PubMed  Google Scholar 

  25. Padmanabhan R, Abdulrazzaq YM, Bastaki SM, Nurulain M, Shafiullah M (2010) Vigabatrin (VGB) administered during late gestation lowers maternal folate concentration and causes pregnancy loss, fetal growth restriction and skeletal hypoplasia in the mouse. Reprod Toxicol 29(3):366–377

    Article  PubMed  CAS  Google Scholar 

  26. Padmanabhan R, Shafiullah M, Benedict S, Nagelkerke N (2006) Effect of maternal exposure to homocysteine on sodium valproate-induced neural tube defects in the mouse embryos. Eur J Nutr 45(6):311–319

    Article  PubMed  CAS  Google Scholar 

  27. Sterz H, Lehmann H (1985) A critical comparison of the free hand razor blade dissection method according to Wilson with an in situ sectioning method for rat fetuses. Terat Carcin Mutagen 5:347–354

    Article  CAS  Google Scholar 

  28. Inouye M (1976) Differential staining of cartilage and bone in fetal mouse skeleton by alcian blue and alizarin red S. Congenit Anom 16:71–173

    Google Scholar 

  29. Marchi NS, Azoubel R, Tognola WA (2001) Teratogenic effects of LTG on rat fetal brain: a morphometric study. Arq Neuropsiquiatr 59:362–364

    Article  PubMed  CAS  Google Scholar 

  30. Ohman I, Vitols S, Tomson T (2000) LTG in pregnancy: pharmacokinetics during delivery, in the neonate, and during lactation. Epilepsia 41(6):709–713

    Article  PubMed  CAS  Google Scholar 

  31. Koren G, Pastuszak A, Ito S (1998) Drugs in pregnancy. N Engl J Med 338:1128–1137

    Article  PubMed  CAS  Google Scholar 

  32. van Gelder MM, van Rooij IA, Miller RK, Zielhuis GA, de Jong-van den Berg LT, Roeleveld N (2010) Teratogenic mechanisms of medical drugs. Hum Reprod Update 16:378–394

    Article  PubMed  CAS  Google Scholar 

  33. Lindhout D (1992) Pharmacogenetics and drug interactions: Role in antiepileptic-drug-induced teratogenesis. Neurology 42:43–47

    Article  PubMed  CAS  Google Scholar 

  34. Petrenaite V, Sabers A, Hansen-Schwartz J (2005) Individual changes in LTG plasma concentrations during pregnancy. Epilepsy Res 65(3):185–188

    Article  PubMed  CAS  Google Scholar 

  35. Reimers A, Helde G, Bråthen G, Brodtkorb E (2011) LTG and its N2-glucuronide during pregnancy: the significance of renal clearance and estradiol. Epilepsy Res 94(3):198–205

    Article  PubMed  CAS  Google Scholar 

  36. Tureski RJ, Bessette EE, Dunbar D, Liberman RG, Skipper PL (2012) Cytochrome P450-mediated metabolism and DNA binding of 2-Amino-1,7-dimethylimidazo[4,5-g]quinoxaline and its carcinogenic isomer2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline in mice. Chem Res Toxicol 25(2):410–421

    Article  CAS  Google Scholar 

  37. Cunnington M, Ferber S, Quartey G; International Lamotrigine Pregnancy Registry Scientific Advisory Committee (2007) Effect of dose on the frequency of major birth defects following fetal exposure to lamotrigine monotherapy in an international observational study. Epilepsia 48(6):1207–1210

    Article  PubMed  CAS  Google Scholar 

  38. Ban L, Fleming KM, Doyle P, Smeeth L, Hubbard RB, Fiaschi L, Tata LJ (2015) Congenital Anomalies in children of mothers taking antiepileptic drugs with and without periconceptional high dose folic acid use: a population-based cohort study. PLoS ONE 10(7): e0131130. https://doi.org/10.1371/journal.pone.0131130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Vajda FJE, Graham JE, Hitchcock AA, O’Brien TJ, Lander CM, Eadie MJ (2010) Is LTG a significant human teratogen? Observations from the Australian Pregnancy Register. Seizure 19:558–561

    Article  PubMed  CAS  Google Scholar 

  40. Weston J, Bromley R, Jackson CF, Adab N, Clayton-Smith J, Greenhalgh J, Hounsome J, McKay AJ, Tudur Smith C, Marson AG (2016) Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child. Cochrane Database Syst Rev 11:CD010224

    PubMed  Google Scholar 

  41. Leppik IE (1990) How to get patients with epilepsy to take their medication. The problem of noncompliance. Postgrad Med 88:253–256

    Article  PubMed  CAS  Google Scholar 

  42. Hendel J, Dam M, Gram L, Winkel P, Jorgensen I (1984) The effect of carbamezapine and valproate on folate metabolism in man. Acta Neurol Scand 69:226–231

    Article  PubMed  CAS  Google Scholar 

  43. Kirke PN, Molloy AM, Daly LE, Burke H, Weir DG, Scott JM (1993) Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q J Med 86:703–708

    PubMed  CAS  Google Scholar 

  44. Gu Q, Li Y, Cui ZL, Luo XP (2012) Homocysteine, folate, vitamin B12 and B6 in mothers of children with neural tube defects in Xinjiang, China. Acta Paediatr 101(11):e486–e490

    Article  PubMed  CAS  Google Scholar 

  45. Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR, Weir DG, Scott JM (1995) Homocysteine metabolism in pregnancies complicated by neural tube defects. Lancet 345:149–151

    Article  PubMed  CAS  Google Scholar 

  46. Iqbal MM, Gundlapalli SP, Ryan WG, Ryals T, Passman TE (2001) Effect of antimanic mood-stabilizing drugs on fetuses, neonates, and nursing infants. South Med J 94:304

    Article  PubMed  CAS  Google Scholar 

  47. Jordan RL, Wilson JG, Schumacher HJ (1977) Embryotoxicity of the folate antagonist methotrexate in rats and rabbits. Teratology 15:73–80

    Article  PubMed  CAS  Google Scholar 

  48. Papakostas GI, Shelton RC, Zajecka JM et al (2012) L-methylfolate as adjunctive therapy for SSRI-resistant major depression: results of two randomized, double-blind, parallel-sequential trials. Am J Psychiatry 169:1267–1274

    Article  PubMed  Google Scholar 

  49. Brodie MJ (1992) LTG Lancet 339:1397–1400

    Article  PubMed  CAS  Google Scholar 

  50. Geddes JR, Gardiner A, Rendell J, Voysey M, Tunbridge E, Hinds C, Yu L-M, Hainsworth J, Attenburrow M-J, Somin J, Goodwin GM, Harrison PJ, CEQUEL Investigators and Collaborators (2016) Comparative evaluation of quetiapine plus LTG combination versus quetiapine monotherapy (and folic acid versus placebo) in bipolar depression (CEQUEL): a 2 × 2 factorial randomised trial. Lancet Psychiatry 3:31–39

    Article  PubMed  Google Scholar 

  51. Dolk H, Wang H, Loane M, Morris J, Garne E, Addor M-C et al (2016) LTG use in pregnancy and risk of orofacial cleft and other congenital anomalies. Neurology 86:1716–1725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Verrotti A, Pascarella R, Trotta D, Giuva T, Morgese G, Chiarelli F (2000) Hyperhomocysteinemia in children treated with sodium valproate and carbamazepine. Epilepsy Res 41:253–257

    Article  PubMed  CAS  Google Scholar 

  53. Alonso-Aperte E, Ubeda N, Achon M, Perez-Miguelsanz J, Varela-Moreiras G (1999) Impaired methionine synthesis and hypomethylation in rats exposed to valproate during gestation. Neurology 52:750–756

    Article  PubMed  CAS  Google Scholar 

  54. Yoo JH, Hong SB (1999) A common mutation in the methylenetetrahydrofolate reductase gene is a determinant of hyperhomocysteinemia in epileptic patients receiving anticonvulsants. Metabolism 48:1047–1051

    Article  PubMed  CAS  Google Scholar 

  55. Dias-Arrastia R (2000) Homocysteine and neurologic disease. Arch Neurol 57:1422–1427

    Google Scholar 

Download references

Acknowledgements

We are indebted to Sheikh Hamdan Award for Medical Sciences for providing funds for this work (Grant No. MRG13/2005). We are also grateful to the College of Medicine and Health Sciences, UAE University for making available the laboratory facilities and animals, without which this work would not be possible.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. M. Abdulrazzaq or S. M. A. Bastaki.

Ethics declarations

Conflict of interest

There are no conflicts of interest with any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrazzaq, Y.M., Shafiullah, M., Kochyil, J. et al. Ameliorative effects of supplemental folinic acid on Lamotrigine-induced fetal malformations in the mouse. Mol Cell Biochem 446, 185–197 (2018). https://doi.org/10.1007/s11010-018-3285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3285-0

Keywords

Navigation