Skip to main content

Advertisement

Log in

Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Liver cancer is the sixth most common cancer worldwide and 3rd most common cause of cancer-related death. Hepatocellular carcinoma (HCC) represents more than 90% of primary liver cancer and is a major public health problem. Due to the advanced stages of HCC at the time of diagnosis, utilizing the conventional treatment for solid tumors frequently ends with treatment failure, recurrence, or poor survival. HCC is highly refractory to chemotherapy and other systemic treatments, and locoregional therapies or selective internal radiation therapies are largely palliative. Considering how the pathogenesis of HCC often induces an immunosuppressed state which is further amplified by post-treatment recurrence and reactivation, immunostimulation provides a potential novel approach for the treatment of HCC. Immune response(s) of the body may be potentiated by immunomodulation of various effector cells such as B-cells, T-cells, Treg cells, natural killer cells, dendritic cells, cytotoxic T-lymphocytes, and other antigen-presenting cells; cellular components such as genes and microRNA; and molecules such as proteins, proteoglycans, surface receptors, chemokines, and cytokines. Targeting these effectors individually has helped in the development of newer therapeutic approaches; however, combinational therapies targeting multi-faceted biomarkers have yielded better results. Still, there is a need for further research to develop novel therapeutic strategies which may act as either complementary or an alternative treatment to the standard therapy protocols of HCC. This review focuses on potential cellular and molecular targets, as well as the role of virotherapy and combinational therapy in the treatment of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Greten TF, Duffy AG, Korangy F (2013) Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res 19(24):6678–6685

    Article  CAS  PubMed  Google Scholar 

  2. El-Serag HB (2007) Epidemiology of hepatocellular carcinoma in USA. Hepatol Res 37(Suppl 2):S88–S94

    Article  PubMed  Google Scholar 

  3. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576

    Article  CAS  PubMed  Google Scholar 

  4. Zeng Z (2014) Human genes involved in hepatitis B virus infection. World J Gastroenterol 20(24):7696–7706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zanetti AR (1999) Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. J Viral Hepat 6(1):35–47

    Article  Google Scholar 

  6. Parkin DM, Bray F, Ferlay J, Pisani P (2001) Estimating the world cancer burden: Globocan 2000. Int J Cancer 94(2):153–156

    Article  CAS  PubMed  Google Scholar 

  7. Miamen AG, Dong H, Roberts LR (2012) Immunotherapeutic approaches to hepatocellular carcinoma treatment. Liver Cancer 1(3–4):226–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y et al (2011) Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53(4):1206–1216

    Article  CAS  PubMed  Google Scholar 

  9. Korangy F, Ormandy LA, Bleck JS, Klempnauer J, Wilkens L, Manns MP et al (2004) Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin Cancer Res 10(13):4332–4341

    Article  CAS  PubMed  Google Scholar 

  10. Primack A, Vogel CL, Barker LF (1973) Immunological studies in Ugandan patients with hepatocellular carcinoma. BMJ 1(5844):16–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beckebaum S, Cicinnati VR, Dworacki G, Muller-Berghaus J, Stolz D, Harnaha J et al (2002) Reduction in the circulating pDC1/pDC2 ratio and impaired function of ex vivo-generated DC1 in chronic hepatitis B infection. Clin Immunol 104(2):138–150

    Article  CAS  PubMed  Google Scholar 

  12. Ninomiya T, Akbar SM, Masumoto T, Horiike N, Onji M (1999) Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J Hepatol 31(2):323–331

    Article  CAS  PubMed  Google Scholar 

  13. Pedroza-Gonzalez A, Zhou G, Vargas-Mendez E, Boor PP, Mancham S, Verhoef C et al (2015) Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. Oncoimmunology 4(6):e1008355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rai V, Dietz NE, Agrawal DK (2016) Immunological basis for treatment of graft versus host disease after liver transplant. Expert Rev Clin Immunol 12(5):583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. El-Serag HB, Marrero JA, Rudolph L, Reddy KR (2008) Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134(6):1752–1763

    Article  PubMed  Google Scholar 

  16. den Brok M, Sutmuller RPM, Nierkens S, Bennink EJ, Frielink C, Toonen LWJ et al (2006) Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 95(7):896–905

    Article  CAS  Google Scholar 

  17. Zerbini A, Pilli M, Penna A, Pelosi G, Schianchi C, Molinari A et al (2006) Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Can Res 66(2):1139–1146

    Article  CAS  Google Scholar 

  18. Hansler J, Wissniowski TuT, Schuppan D, Witte A, Bernatik T, Hahn EG et al (2006) Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol 12(23):3716–3721

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zerbini A, Pilli M, Laccabue D, Pelosi G, Molinari A, Negri E et al (2010) Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 138(5):1931–1942

    Article  CAS  PubMed  Google Scholar 

  20. Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F et al (2013) Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology 57(4):1448–1457

    Article  CAS  PubMed  Google Scholar 

  21. Ayaru L, Pereira SP, Alisa A, Pathan AA, Williams R, Davidson B et al (2007) Unmasking of alpha-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol 178(3):1914–1922

    Article  CAS  PubMed  Google Scholar 

  22. Hiroishi K, Eguchi J, Baba T, Shimazaki T, Ishii S, Hiraide A et al (2008) Strong CD8+ T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 45(4):451–458

    Article  CAS  Google Scholar 

  23. Nobuoka D, Motomura Y, Shirakawa H, Yoshikawa T, Kuronuma T, Takahashi M et al (2012) Radiofrequency ablation for hepatocellular carcinoma induces glypican-3 peptide-specific cytotoxic T lymphocytes. Int J Oncol 40(1):63–70

    CAS  PubMed  Google Scholar 

  24. Wu F, Wang ZB, Lu P, Xu ZL, Chen WZ, Zhu H et al (2004) Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound Med Biol 30(9):1217–1222

    Article  PubMed  Google Scholar 

  25. Zeng Z, Shi F, Zhou L, Zhang MN, Chen Y, Chang XJ et al (2011) Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS ONE 6(9):e23621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi L, Chen L, Wu C, Zhu Y, Xu B, Zheng X et al (2016) PD-1 Blockade Boosts Radiofrequency Ablation-Elicited Adaptive Immune Responses against Tumor. Clin Cancer Res 22(5):1173–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Asghar U, Meyer T (2012) Are there opportunities for chemotherapy in the treatment of hepatocellular cancer? J Hepatol 56(3):686–695

    Article  PubMed  Google Scholar 

  28. Cabibbo G, Craxi A (2010) Epidemiology, risk factors and surveillance of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 14(4):352–355

    CAS  PubMed  Google Scholar 

  29. Bartosch B (2010) Hepatitis B and C viruses and hepatocellular carcinoma. Viruses 2(8):1504–1509

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tomov B, Popov D, Tomova R, Vladov N, Den Otter W, Krastev Z (2013) Therapeutic response of untreatable hepatocellular carcinoma after application of the immune modulators IL-2, BCG and melatonin. Anticancer Res 33(10):4531–4535

    CAS  PubMed  Google Scholar 

  31. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Christophi C, Harun N, Fifis T (2008) Liver regeneration and tumor stimulation-a review of cytokine and angiogenic factors. J Gastrointest Surg 12(5):966–980

    Article  PubMed  Google Scholar 

  33. Chen JA, Shi M, Li JQ, Qian CN (2010) Angiogenesis: multiple masks in hepatocellular carcinoma and liver regeneration. Hepatol Int 4(3):537–547

    Article  PubMed  PubMed Central  Google Scholar 

  34. Butterfield LH (2004) Immunotherapeutic strategies for hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S232–S241

    Article  CAS  PubMed  Google Scholar 

  35. Guidotti LG, Chisari FV (2006) Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol Mech Dis 1:23–61

    Article  CAS  Google Scholar 

  36. Tan S-L, Katze MG (2001) How hepatitis C virus counteracts the interferon response: the jury is still out on NS5A. Virology 284(1):1–12

    Article  CAS  PubMed  Google Scholar 

  37. Reyes GR (2002) The nonstructural NS5A protein of hepatitis C virus: an expanding, multifunctional role in enhancing hepatitis C virus pathogenesis. J Biomed Sci 9(3):187–197

    Article  CAS  PubMed  Google Scholar 

  38. Macdonald A, Harris M (2004) Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 85(9):2485–2502

    Article  CAS  PubMed  Google Scholar 

  39. Fournier C, Fo Helle, Vr Descamps, Morel V, François C, Dedeurwaerder S et al (2013) Natural selection of adaptive mutations in non-structural genes increases trans-encapsidation of hepatitis C virus replicons lacking envelope protein genes. J Gen Virol 94(Pt 5):996–1008

    Article  CAS  PubMed  Google Scholar 

  40. Gong G, Waris G, Tanveer R, Siddiqui A (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci USA 98(17):9599–9604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Majumder M, Ghosh AK, Steele R, Ray R, Ray RB (2001) Hepatitis C virus NS5A physically associates with p53 and regulates p21/waf1 gene expression in a p53-dependent manner. J Virol 75(3):1401–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Polyak SJ, Khabar KSA, Paschal DM, Ezelle HJ, Duverlie G, Barber GN et al (2001) Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J Virol 75(13):6095–6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Foy E, Li K, Wang C, Sumpter R, Ikeda M, Lemon SM et al (2003) Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300(5622):1145–1148

    Article  CAS  PubMed  Google Scholar 

  44. Park KJ, Choi SH, Choi DH, Park JM, Yie SW, Lee SY et al (2003) Hepatitis C virus NS5A protein modulates c-Jun N-terminal kinase through interaction with tumor necrosis factor receptor-associated factor 2. J Biol Chem 278(33):30711–30718

    Article  CAS  PubMed  Google Scholar 

  45. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  CAS  PubMed  Google Scholar 

  46. Homma S, Toda G, Gong J, Kufe D, Ohno T (2001) Preventive antitumor activity against hepatocellular carcinoma (HCC) induced by immunization with fusions of dendritic cells and HCC cells in mice. J Gastroenterol 36(11):764–771

    Article  CAS  PubMed  Google Scholar 

  47. Tatsumi T, Takehara T, Kanto T, Miyagi T, Kuzushita N, Sugimoto Y et al (2001) Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma. Cancer Res 61(20):7563–7567

    CAS  PubMed  Google Scholar 

  48. Lee WC, Wang HC, Jeng LB, Chiang YJ, Lia CR, Huang PF et al (2001) Effective treatment of small murine hepatocellular carcinoma by dendritic cells. Hepatology 34(5):896–905

    Article  CAS  PubMed  Google Scholar 

  49. Su S, Zhou H, Xue M, Liu JY, Ding L, Cao M et al (2013) Anti-tumor efficacy of a hepatocellular carcinoma vaccine based on dendritic cells combined with tumor-derived autophagosomes in murine models. Asian Pac J Cancer Prev 14(5):3109–3116

    Article  PubMed  Google Scholar 

  50. Xie BH, Yang JY, Li HP, Zhang B, Chen W, Zhou B et al (2014) Dendritic cells transfected with hepatocellular carcinoma (HCC) total RNA induce specific immune responses against HCC in vitro and in vivo. Clin Transl Oncol 16(8):753–760

    Article  CAS  PubMed  Google Scholar 

  51. Zhou J, Ma P, Li J, Cui X, Song W (2016) Improvement of the cytotoxic T lymphocyte response against hepatocellular carcinoma by transduction of cancer cells with an adeno-associated virus carrying the interferon-gamma gene. Mol Med Rep 13(4):3197–3205

    Article  CAS  PubMed  Google Scholar 

  52. Lu SY, Sui YF, Li ZS, Ye J, Dong HL, Qu P et al (2004) Superantigen-SEA gene modified tumor vaccine for hepatocellular carcinoma: an in vitro study. World J Gastroenterol 10(1):53–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schueller G, Stift A, Friedl J, Dubsky P, Bachleitner-Hofmann T, Benkoe T et al (2003) Hyperthermia improves cellular immune response to human hepatocellular carcinoma subsequent to co-culture with tumor lysate pulsed dendritic cells. Int J Oncol 22(6):1397–1402

    PubMed  Google Scholar 

  54. Sun C, Sun HY, Xiao WH, Zhang C, Tian ZG (2015) Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin 36(10):1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shabani Z, Bagheri M, Zare-Bidaki M, Hassanshahi G, Arababadi MK, Nejad MM et al (2014) NK cells in hepatitis B virus infection: a potent target for immunotherapy. Arch Virol 159(7):1555–1565

    Article  CAS  PubMed  Google Scholar 

  56. Cariani E, Missale G (2013) KIR/HLA immunogenetic background influences the evolution of hepatocellular carcinoma. Oncoimmunology 2(12):e26622

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sun X, Sui Q, Zhang C, Tian Z, Zhang J (2013) Targeting Blockage of STAT3 in Hepatocellular Carcinoma Cells Augments NK Cell Functions via Reverse Hepatocellular Carcinoma-Induced Immune Suppression. Mol Cancer Ther 12(12):2885–2896

    Article  CAS  PubMed  Google Scholar 

  58. Jiang W, Zhang C, Tian Z, Zhang J (2014) hIL-15 gene-modified human natural killer cells (NKL-IL15) augments the anti-human hepatocellular carcinoma effect in vivo. Immunobiology 219(7):547–553

    Article  CAS  PubMed  Google Scholar 

  59. Kamiya T, Chang YH, Campana D (2016) Expanded and activated natural killer cells for immunotherapy of hepatocellular carcinoma. Cancer Immunol Res 4(7):574–581

    Article  CAS  PubMed  Google Scholar 

  60. Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, Chi XQ et al (2016) Natural killer cells inhibit pulmonary metastasis of hepatocellular carcinoma in nude mice. Oncol Lett 11(3):2019–2026

    PubMed  PubMed Central  Google Scholar 

  61. Attallah AM, Tabll AA, El-Sadany M, Ibrahim TA, El-Dosoky I (2003) Dysregulation of blood lymphocyte subsets and natural killer cells in schistosomal liver cirrhosis and hepatocellular carcinoma. Clin Exp Med 3(3):181–185

    Article  CAS  PubMed  Google Scholar 

  62. Sachdeva M, Chawla YK, Arora SK (2015) Immunology of hepatocellular carcinoma. World J Hepatol 7(17):2080–2090

    Article  PubMed  PubMed Central  Google Scholar 

  63. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F et al (2008) Sorafenib in advanced hepatocellular carcinoma. New Eng J Med 359(4):378–390

    Article  CAS  PubMed  Google Scholar 

  64. Cabrera R, Ararat M, Xu Y, Brusko T, Wasserfall C, Atkinson MA et al (2013) Immune modulation of effector CD4+ and regulatory T cell function by sorafenib in patients with hepatocellular carcinoma. Cancer Immunol Immunother 62(4):737–746

    Article  CAS  PubMed  Google Scholar 

  65. Nagai H, Mukozu T, Matsui D, Kanekawa T, Kanayama M, Wakui N et al (2012) Sorafenib prevents escape from host immunity in liver cirrhosis patients with advanced hepatocellular carcinoma. Clinical Dev Immunol 2012:607851

    Article  CAS  Google Scholar 

  66. Ady JW, Heffner J, Mojica K, Johnsen C, Belin LJ, Love D et al (2014) Oncolytic immunotherapy using recombinant vaccinia virus GLV-1h68 kills sorafenib-resistant hepatocellular carcinoma efficiently. Surgery 156(2):263–269

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tai WT, Cheng AL, Shiau CW, Liu CY, Ko CH, Lin MW et al (2012) Dovitinib induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through SHP-1-mediated inhibition of STAT3. Mol Cancer Ther 11(2):452–463

    Article  CAS  PubMed  Google Scholar 

  68. Chen KF, Chen HL, Liu CY, Tai WT, Ichikawa K, Chen PJ et al (2012) Dovitinib sensitizes hepatocellular carcinoma cells to TRAIL and tigatuzumab, a novel anti-DR5 antibody, through SHP-1-dependent inhibition of STAT3. Biochem Pharmacol 83(6):769–777

    Article  CAS  PubMed  Google Scholar 

  69. Ezzoukhry Z, Louandre C, Trecherel E, Godin C, Chauffert B, Dupont S et al (2012) EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer 131(12):2961–2969

    Article  CAS  PubMed  Google Scholar 

  70. Maheswaran T, Rushbrook SM (2012) Epithelial-mesenchymal transition and the liver: role in hepatocellular carcinoma and liver fibrosis. J Gastroenterol Hepatol 27(3):418–420

    Article  CAS  PubMed  Google Scholar 

  71. Chuang HY, Chang YF, Liu RS, Hwang JJ (2014) Serial low doses of sorafenib enhance therapeutic efficacy of adoptive T cell therapy in a murine model by improving tumor microenvironment. PLoS ONE 9(10):e109992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Rosenberg SA (2011) Cell transfer immunotherapy for metastatic solid cancer-what clinicians need to know. Nat Rev Clin Oncol 8(10):577–585

    Article  CAS  PubMed  Google Scholar 

  73. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G et al (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14(11):1264–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26(32):5233–5239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17(13):4550–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu H, Qiu Y, Guo M, Huang Y, Fang L, Peng Z et al (2015) Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models. Oncotarget 6(2):1079–1089

    Article  PubMed  Google Scholar 

  77. Li R, Yan F, Liu L, Li H, Ren B, Hui Z et al (2016) Cytokine-induced killer cell therapy for the treatment of primary hepatocellular carcinoma subsequent to liver transplantation: a case report. Oncol Lett 11(3):1885–1888

    PubMed  PubMed Central  Google Scholar 

  78. Pedroza-Gonzalez A, Zhou G, Singh SP, Boor PP, Pan Q, Grunhagen D et al (2015) GITR engagement in combination with CTLA-4 blockade completely abrogates immunosuppression mediated by human liver tumor-derived regulatory T cells. Oncoimmunology 4(12):e1051297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Han Y, Yang Y, Chen Z, Jiang Z, Gu Y, Liu Y et al (2014) Human hepatocellular carcinoma-infiltrating CD4+ CD69+ Foxp3 regulatory T cell suppresses T cell response via membrane-bound TGF-β1. J Mol Med 92(5):539–550

    Article  CAS  PubMed  Google Scholar 

  80. Spear TT, Callender GG, Roszkowski JJ, Moxley KM, Simms PE, Foley KC et al (2016) TCR gene-modified T cells can efficiently treat established hepatitis C-associated hepatocellular carcinoma tumors. Cancer Immunol Immunother 65(3):293–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Habib NA, Ding SF, El-Masry R, Mitry RR, Honda K, Michail NE et al (1996) Preliminary report: the short-term effects of direct p53 DNA injection in primary hepatocellular carcinomas. Cancer Detect Prev 20(2):103–107

    CAS  PubMed  Google Scholar 

  82. Leboeuf Cl, Mailly L, Wu T, Bour G, Durand S, Brignon N et al (2014) In Vivo Proof of Concept of Adoptive Immunotherapy for Hepatocellular Carcinoma Using Allogeneic Suicide Gene-modified Killer Cells. Mol Ther 22(3):634–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu T, Leboeuf C, Durand S, Su B, Deschamps M, Zhang X et al (2016) Suicide gene-modified killer cells as an allogeneic alternative to autologous cytokine-induced killer cell immunotherapy of hepatocellular carcinoma. Mol Med Rep 13(3):2645–2654

    Article  CAS  PubMed  Google Scholar 

  84. He L, Gong HX, Li XP, Wang YD, Li Y, Huang JJ et al (2013) Inhibition of hepatocellular carcinoma growth by adenovirus-mediated expression of human telomerase reverse transcriptase COOH-27 terminal polypeptide in mice. Oncol Lett 6(3):748–752

    PubMed  PubMed Central  Google Scholar 

  85. Sun L, Guo H, Jiang R, Lu L, Liu T, He X (2016) Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma. Tumour Biol 37(1):799–806

    Article  CAS  PubMed  Google Scholar 

  86. Chen Y, Huang A, Gao M, Yan Y, Zhang W (2013) Potential therapeutic value of dendritic cells loaded with NY-ESO-1 protein for the immunotherapy of advanced hepatocellular carcinoma. Int J Mol Med 32(6):1366–1372

    Article  CAS  PubMed  Google Scholar 

  87. Fujiwara K, Koyama K, Suga K, Ikemura M, Saito Y, Hino A et al (2014) A 90 Y-labelled anti-ROBO1 monoclonal antibody exhibits antitumour activity against hepatocellular carcinoma xenografts during ROBO1-targeted radioimmunotherapy. EJNMMI Res 4(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Aref AM, Hoa NT, Ge L, Agrawal A, Dacosta-Iyer M, Lambrecht N et al (2014) HCA519/TPX2: a potential T-cell tumor-associated antigen for human hepatocellular carcinoma. Onco Targets Ther 7:1061–1070

    PubMed  PubMed Central  Google Scholar 

  89. Hong YP, Li ZD, Prasoon P, Zhang Q (2015) Immunotherapy for hepatocellular carcinoma: from basic research to clinical use. World J Hepatol 7(7):980–992

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14(8):561–584

    Article  CAS  PubMed  Google Scholar 

  91. Pinter M, Trauner M, Peck-Radosavljevic M, Sieghart W (2016) Cancer and liver cirrhosis: implications on prognosis and management. ESMO Open 1(2):e000042

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zwicke GL, Mansoori GA, Jeffery CJ (2012) Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 3:1–17

    Article  CAS  Google Scholar 

  93. Ling D, Xia H, Park W, Hackett MJ, Song C, Na K et al (2014) pH-sensitive nanoformulated triptolide as a targeted therapeutic strategy for hepatocellular carcinoma. ACS Nano 8(8):8027–8039

    Article  CAS  PubMed  Google Scholar 

  94. Bagheri V, Askari A, Arababadi MK, Kennedy D (2014) Can Toll-Like Receptor (TLR) 2 be considered as a new target for immunotherapy against hepatitis B infection? Hum Immunol 75(6):549–554

    Article  CAS  PubMed  Google Scholar 

  95. Lu X, Xu Q, Bu X, Ma X, Zhang F, Deng Q et al (2014) Relationship between expression of toll-like receptors 2/4 in dendritic cells and chronic hepatitis B virus infection. Int J Clin Exp Pathol 7(9):6048–6055

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bagheri V, Askari A, Arababadi MK, Kennedy D (2014) Can Toll-Like Receptor (TLR) 2 be considered as a new target for immunotherapy against hepatitis B infection? Hum Immunol 75(6):549–554

    Article  CAS  PubMed  Google Scholar 

  97. Zhang Y, Lin A, Zhang C, Tian Z, Zhang J (2014) Phosphorothioate-modified CpG oligodeoxynucleotide (CpG ODN) induces apoptosis of human hepatocellular carcinoma cells independent of TLR9. Cancer Immunol Immunother 63(4):357–367

    Article  CAS  PubMed  Google Scholar 

  98. Duan M, Wang ZC, Wang XY, Shi JY, Yang LX, Ding ZB et al (2015) TREM-1, an inflammatory modulator, is expressed in hepatocellular carcinoma cells and significantly promotes tumor progression. Ann Surg Oncol 22(9):3121–3129

    Article  PubMed  Google Scholar 

  99. Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A (2012) The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res 72(16):3977–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cepeda EB, Dediulia T, Fernando J, Bertran E, Egea G, Navarro E et al (2015) Mechanisms regulating cell membrane localization of the chemokine receptor CXCR4 in human hepatocarcinoma cells. Biochim Biophys Acta 1853:1205–1218

    Article  CAS  PubMed  Google Scholar 

  101. Hu F, Miao L, Zhao Y, Xiao YY, Xu Q (2015) A meta-analysis for C-X-C chemokine receptor type 4 as a prognostic marker and potential drug target in hepatocellular carcinoma. Drug Des Dev Ther 9:3625–3633

    Article  Google Scholar 

  102. Garcia-Irigoyen O, Latasa MU, Carotti S, Uriarte I, Elizalde M, Urtasun R et al (2015) Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/C-X-C chemokine receptor 4 axis. Hepatology 62(1):166–178

    Article  CAS  PubMed  Google Scholar 

  103. Li X, Yao W, Yuan Y, Chen P, Li B, Li J et al (2015) Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 66(1):157–167

    Article  PubMed  CAS  Google Scholar 

  104. Kondo Y, Kimura O, Tanaka Y, Ninomiya M, Iwata T, Kogure T et al (2015) Differential expression of CX3CL1 in hepatitis B virus-replicating hepatoma cells can affect the migration activity of CX3CR1+ immune cells. J Virol 89(14):7016–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li X, Yao W, Yuan Y, Chen P, Li B, Li J et al (2017) Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 66(1):157–167

    Article  CAS  PubMed  Google Scholar 

  106. Teng KY, Han J, Zhang X, Hsu SH, He S, Wani N et al (2017) Blocking the CCL2-CCR2 axis using CCL2 neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther 16(2):312–322

    Article  CAS  PubMed  Google Scholar 

  107. Barashi N, Weiss ID, Wald O, Wald H, Beider K, Abraham M et al (2013) Inflammation-induced hepatocellular carcinoma is dependent on CCR5 in mice. Hepatology 58(3):1021–1030

    Article  CAS  PubMed  Google Scholar 

  108. Gao Y, Zhou Z, Lu S, Huang X, Zhang C, Jiang R et al (2016) Chemokine CCL15 mediates migration of human bone marrow-derived mesenchymal stem cells toward hepatocellular carcinoma. Stem Cells 34(4):1112–1122

    Article  CAS  PubMed  Google Scholar 

  109. Li Y, Yu HP, Zhang P (2016) CCL15 overexpression predicts poor prognosis for hepatocellular carcinoma. Hepatol Int 10(3):488–492

    Article  PubMed  Google Scholar 

  110. Li Y, Wu J, Zhang P (2016) CCL15/CCR1 axis is involved in hepatocellular carcinoma cells migration and invasion. Tumour Biol 37(4):4501–4507

    Article  CAS  PubMed  Google Scholar 

  111. Zhu F, Li X, Chen S, Zeng Q, Zhao Y, Luo F (2016) Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol 33(2):17

    Article  PubMed  CAS  Google Scholar 

  112. Chang X, Wang L, Zang M, Rong W, Wu Z, Liu L et al (2015) Relationship between CCL20/CCR6/Th17 axis and vascular invasion and metastasis in patients with primary hepatocellular carcinoma. Zhonghua Zhong Liu Za Zhi 37(1):5–10

    CAS  PubMed  Google Scholar 

  113. Pusterla T, Nemeth J, Stein I, Wiechert L, Knigin D, Marhenke S et al (2013) Receptor for advanced glycation endproducts (RAGE) is a key regulator of oval cell activation and inflammation-associated liver carcinogenesis in mice. Hepatology 58(1):363–373

    Article  CAS  PubMed  Google Scholar 

  114. Buttner N, Schmidt N, Thimme R (2016) Perspectives of immunotherapy in hepatocellular carcinoma (HCC). Z Gastroenterol 54(12):1334–1342

    Article  CAS  PubMed  Google Scholar 

  115. Greten TF, Manns MP, Korangy F (2008) Immunotherapy of HCC. Rev Recent Clin Trials 3(1):31–39

    Article  CAS  PubMed  Google Scholar 

  116. Greten TF, Manns MP, Korangy F (2006) Immunotherapy of hepatocellular carcinoma. J Hepatol 45(6):868–878

    Article  CAS  PubMed  Google Scholar 

  117. Kew MC (1989) Tumour markers of hepatocellular carcinoma. J Gastroenterol Hepatol 4(4):373–384

    Article  CAS  PubMed  Google Scholar 

  118. Soresi M, Magliarisi C, Campagna P, Leto G, Bonfissuto G, Riili A et al (2002) Usefulness of alpha-fetoprotein in the diagnosis of hepatocellular carcinoma. Anticancer Res 23(2C):1747–1753

    Google Scholar 

  119. Vollmer CM Jr, Eilber FC, Butterfield LH, Ribas A, Dissette VB, Koh A et al (1999) Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma. Cancer Res 59(13):3064–3067

    CAS  PubMed  Google Scholar 

  120. Grimm CF, Dr Ortmann, Mohr L, Michalak S, Krohne TU, Meckel S et al (2000) Mouse α-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology 119(4):1104–1112

    Article  CAS  PubMed  Google Scholar 

  121. Pardee AD, Yano H, Weinstein AM, Ponce AA, Ethridge AD, Normolle DP et al (2015) Route of antigen delivery impacts the immunostimulatory activity of dendritic cell-based vaccines for hepatocellular carcinoma. J Immunother Cancer 3:32

    Article  PubMed  PubMed Central  Google Scholar 

  122. Capurro MI, Xiang YY, Lobe C, Filmus J (2005) Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res 65(14):6245–6254

    Article  CAS  PubMed  Google Scholar 

  123. Shirakawa H, Suzuki H, Shimomura M, Kojima M, Gotohda N, Takahashi S et al (2003) Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma. Cancer Sci 8:1403–1407

    Google Scholar 

  124. Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E et al (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125(1):89–97

    Article  CAS  PubMed  Google Scholar 

  125. Filmus J, Capurro M (2013) Glypican-3: a marker and a therapeutic target in hepatocellular carcinoma. FEBS J 280(10):2471–2476

    Article  CAS  PubMed  Google Scholar 

  126. Kojiro M, Wanless IR, Alves V, Badve S, Balabaud C, Bedossa P et al (2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49(2):658–664

    Article  Google Scholar 

  127. Sawada Y, Yoshikawa T, Fujii S, Mitsunaga S, Nobuoka D, Mizuno S et al (2013) Remarkable tumor lysis in a hepatocellular carcinoma patient immediately following glypican-3-derived peptide vaccination: an autopsy case. Hum Vaccin Immunother 9(6):1228–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Feng M, Gao W, Wang R, Chen W, Man Y-G, Figg WD et al (2013) Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc Natl Acad Sci USA 110(12):E1083–E1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ishiguro T, Sugimoto M, Kinoshita Y, Miyazaki Y, Nakano K, Tsunoda H et al (2008) Anti-glypican3 antibody for treatment of human liver cancer. Cancer Res 68(23):9832–9838

    Article  CAS  PubMed  Google Scholar 

  130. Hanaoka H, Nagaya T, Sato K, Nakamura Y, Watanabe R, Harada T et al (2015) Glypican-3 targeted human heavy chain antibody as a drug carrier for hepatocellular carcinoma therapy. Mol Pharm 12(6):2151–2157

    Article  CAS  PubMed  Google Scholar 

  131. Gao W, Kim H, Feng M, Phung Y, Xavier CP, Rubin JS et al (2014) Inactivation of Wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy. Hepatology 60(2):576–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gao W, Kim H, Ho M (2015) Human monoclonal antibody targeting the heparan sulfate chains of glypican-3 inhibits HGF-mediated migration and motility of hepatocellular carcinoma cells. PLoS ONE 10(9):e0137664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sun CK, Chua MS, He J, So SK (2011) Suppression of glypican 3 inhibits growth of hepatocellular carcinoma cells through up-regulation of TGF-beta2. Neoplasia 13(8):735–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zaghloul RA, El-Shishtawy MM, El Galil KH, Ebrahim MA, Metwaly AA, Al-Gayyar MM (2015) Evaluation of antiglypican-3 therapy as a promising target for amelioration of hepatic tissue damage in hepatocellular carcinoma. Eur J Pharmacol 746:353–362

    Article  CAS  PubMed  Google Scholar 

  135. Gao H, Li K, Tu H, Pan X, Jiang H, Shi B et al (2014) Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 20(24):6418–6428

    Article  CAS  PubMed  Google Scholar 

  136. Feng M, Ho M (2014) Glypican-3 antibodies: a new therapeutic target for liver cancer. FEBS Lett 588(2):377–382

    Article  CAS  PubMed  Google Scholar 

  137. Li SQ, Lin J, Qi CY, Fu SJ, Xiao WK, Peng BG et al (2014) GPC3 DNA vaccine elicits potent cellular antitumor immunity against HCC in mice. Hepatogastroenterology 61(130):278–284

    CAS  PubMed  Google Scholar 

  138. Luo C, Shibata K, Suzuki S, Kajiyama H, Senga T, Koya Y et al (2014) GPC3 expression in mouse ovarian cancer induces GPC3-specific T cell-mediated immune response through M1 macrophages and suppresses tumor growth. Oncol Rep 32(3):913–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2(7):521–528

    Article  CAS  PubMed  Google Scholar 

  140. Liu CJ, Lee PH, Lin DY, Wu CC, Jeng LB, Lin PW et al (2009) Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: a randomized phase II trial for safety and optimal dosage. J Hepatol 50(5):958–968

    Article  CAS  PubMed  Google Scholar 

  141. Liao BY, Wang Z, Hu J, Liu WF, Shen ZZ, Zhang X et al (2016) PI-88 inhibits postoperative recurrence of hepatocellular carcinoma via disrupting the surge of heparanase after liver resection. Tumour Biol 37(3):2987–2998

    Article  CAS  PubMed  Google Scholar 

  142. Liu CJ, Chang J, Lee PH, Lin DY, Wu CC, Jeng LB et al (2014) Adjuvant heparanase inhibitor PI-88 therapy for hepatocellular carcinoma recurrence. World J Gastroenterol 20(32):11384–11393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Qiu H, Yang B, Pei ZC, Zhang Z, Ding K (2010) WSS25 inhibits growth of xenografted hepatocellular cancer cells in nude mice by disrupting angiogenesis via blocking bone morphogenetic protein (BMP)/Smad/Id1 signaling. J Biol Chem 285(42):32638–32646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Budhu A, Wang XW (2006) The role of cytokines in hepatocellular carcinoma. J Leukoc Biol 80(6):1197–1213

    Article  CAS  PubMed  Google Scholar 

  145. Gelu-Simeon M, Samuel D (2013) Role of cytokine levels in assessment of prognosis and post-treatment outcome in hepatocellular carcinoma. Hepatol Int 7(3):788–791

    Article  PubMed  Google Scholar 

  146. Chen ZY, Wei W, Guo ZX, Peng LX, Shi M, Li SH et al (2014) Using multiple cytokines to predict hepatocellular carcinoma recurrence in two patient cohorts. Br J Cancer 110(3):733–740

    Article  CAS  PubMed  Google Scholar 

  147. Weiss JM, Subleski JJ, Wigginton JM, Wiltrout RH (2007) Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin Biol Ther 7(11):1705–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee JH, Lim YS, Yeon JE, Song TJ, Yu SJ, Gwak GY et al (2015) Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 148(7):1383–1391

    Article  CAS  PubMed  Google Scholar 

  149. Wang H, Liu A, Bo W, Feng X, Hu Y, Tian L et al (2016) Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma patients after curative resection, a systematic review and meta-analysis. Dig Liver Dis 48(11):1275–1282

    Article  CAS  PubMed  Google Scholar 

  150. Ma Y, Xu YC, Tang L, Zhang Z, Wang J, Wang HX (2012) Cytokine-induced killer (CIK) cell therapy for patients with hepatocellular carcinoma: efficacy and safety. Exp Hematol Oncol 1(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Su Y, Yang Y, Ma Y, Zhang Y, Rao W, Yang G et al (2016) The efficacy and safety of dendritic cells co-cultured with cytokine-induced killer cell therapy in combination with TACE-predominant minimally-invasive treatment for hepatocellular carcinoma: a meta-analysis. Clin Lab 62(4):599–608

    CAS  PubMed  Google Scholar 

  152. Nelson DR, Tu Z, Soldevila-Pico C, Abdelmalek M, Zhu H, Xu YL et al (2003) Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology 38(4):859–868

    Article  CAS  PubMed  Google Scholar 

  153. Hung CH, Chiu YC, Chen CH, Hu TH (2014) MicroRNAs in hepatocellular carcinoma: carcinogenesis, progression, and therapeutic target. Biomed Res Int 2014:486407

    PubMed  PubMed Central  Google Scholar 

  154. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3(6):375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  157. Borel F, Konstantinova P, Jansen PL (2012) Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J Hepatol 56(6):1371–1383

    Article  CAS  PubMed  Google Scholar 

  158. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J (2010) miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 31(5):766–776

    Article  CAS  PubMed  Google Scholar 

  159. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482(7385):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, Marubashi S et al (2012) Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol 56(1):167–175

    Article  CAS  PubMed  Google Scholar 

  161. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122(1):6–7

    Article  CAS  PubMed  Google Scholar 

  162. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  163. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  164. Petrelli A, Perra A, Cora D, Sulas P, Menegon S, Manca C et al (2014) MicroRNA/gene profiling unveils early molecular changes and nuclear factor erythroid related factor 2 (NRF2) activation in a rat model recapitulating human hepatocellular carcinoma (HCC). Hepatology 59(1):228–241

    Article  CAS  PubMed  Google Scholar 

  165. Xu J, Wu C, Che X, Wang L, Yu D, Zhang T et al (2011) Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog 50(2):136–142

    Article  CAS  PubMed  Google Scholar 

  166. Li J, Wang Y, Yu W, Chen J, Luo J (2011) Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem Biophys Res Commun 406(1):70–73

    Article  CAS  PubMed  Google Scholar 

  167. Li LM, Hu ZB, Zhou ZX, Chen X, Liu FY, Zhang JF et al (2010) Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res 70(23):9798–9807

    Article  CAS  PubMed  Google Scholar 

  168. Liu AM, Yao TJ, Wang W, Wong KF, Lee NP, Fan ST et al (2012) Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open 2(2):e000825

    Article  PubMed  PubMed Central  Google Scholar 

  169. Qu KZ, Zhang K, Li H, Afdhal NH, Albitar M (2011) Circulating microRNAs as biomarkers for hepatocellular carcinoma. J Clin Gastroenterol 45(4):355–360

    Article  CAS  PubMed  Google Scholar 

  170. Gao P, Wong CC, Tung EK, Lee JM, Wong CM, Ng IO (2011) Deregulation of microRNA expression occurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis. J Hepatol 54(6):1177–1184

    Article  CAS  PubMed  Google Scholar 

  171. Wang XW, Heegaard NH, Orum H (2012) MicroRNAs in liver disease. Gastroenterology 142(7):1431–1443

    Article  CAS  PubMed  Google Scholar 

  172. Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR et al (2012) MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res 40(10):4615–4625

    Article  CAS  PubMed  Google Scholar 

  173. Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM et al (2009) MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49(5):1571–1582

    Article  CAS  PubMed  Google Scholar 

  174. Lang Q, Ling C (2012) MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA. Biochem Biophys Res Commun 426(2):247–252

    Article  CAS  PubMed  Google Scholar 

  175. Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H et al (2009) MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 284(46):32015–32027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fornari F et al (2012) Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology 56(3):1025–1033

    Article  CAS  PubMed  Google Scholar 

  177. Morishita A, Masaki T (2015) miRNA in hepatocellular carcinoma. Hepatol Res 45(2):128–141

    Article  CAS  PubMed  Google Scholar 

  178. Tomimaru Y, Eguchi H, Nagano H, Wada H, Tomokuni A, Kobayashi S et al (2010) MicroRNA-21 induces resistance to the anti-tumour effect of interferon-alpha/5-fluorouracil in hepatocellular carcinoma cells. Br J Cancer 103(10):1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang B, Hsu S-H, Majumder S, Kutay H, Huang W, Jacob ST et al (2010) TGFβ-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29(12):1787–1797

    Article  CAS  PubMed  Google Scholar 

  180. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23(8):1002–1007

    Article  CAS  PubMed  Google Scholar 

  181. Hildebrandt-Eriksen ES, Aarup V, Persson R, Hansen HF, Munk ME, Orum H (2012) A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. Nucleic Acid Ther 22(3):152–161

    CAS  PubMed  Google Scholar 

  182. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962):198–201

    Article  CAS  PubMed  Google Scholar 

  183. Li YP, Gottwein JM, Scheel TK, Jensen TB, Bukh J (2011) MicroRNA-122 antagonism against hepatitis C virus genotypes 1-6 and reduced efficacy by host RNA insertion or mutations in the HCV 5′ UTR. Proc Natl Acad Sci USA 108(12):4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jiang L, Cheng Q, Zhang BH, Zhang MZ (2015) Circulating microRNAs as biomarkers in hepatocellular carcinoma screening: a validation set from China. Medicine 94(10):e603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sun J, Lu H, Wang X, Jin H (2013) MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. Sci World J 2013:924206

    Google Scholar 

  186. Ko KS, Peng H, Tang H, Cho ME, Peng J, Aller M-A et al (2012) Recent advances of miRNA involvement in hepatocellular carcinoma and cholangiocarcinoma. Open J Int Med 2(3):135–162

    Article  CAS  Google Scholar 

  187. Zhang T, Liu W, Zeng XC, Jiang N, Fu BS, Guo Y et al (2016) Down-regulation of microRNA-338-3p promoted angiogenesis in hepatocellular carcinoma. Biomed Pharmacother 84:583–591

    Article  CAS  PubMed  Google Scholar 

  188. Zhu H, Wang G, Zhou X, Song X, Gao H, Ma C et al (2016) miR-1299 suppresses cell proliferation of hepatocellular carcinoma (HCC) by targeting CDK6. Biomed Pharmacother 83:792–797

    Article  PubMed  CAS  Google Scholar 

  189. Chen L, Zhou S, Qin J, Hu H, Ma H, Liu B et al (2013) Combination of SLC administration and Tregs depletion is an attractive strategy for targeting hepatocellular carcinoma. Mol Cancer 12(1):153

    Article  PubMed  PubMed Central  Google Scholar 

  190. Guo WW, Liu L, Wu DH (2014) Dendritic cell-cytokine induced killer cell immunotherapy combined with transcatheter arterial chemoembolization for hepatocellular carcinoma: safety and efficacy. Nan Fang Yi Ke Da Xue Xue Bao 34(5):674–678

    PubMed  Google Scholar 

  191. Chen R, Yu H, An YL, Yu-Jia Z, Teng GJ (2014) Genetic immunotherapy for hepatocellular carcinoma by endothelial progenitor cells armed with cytosine deaminase. J Biomed Nanotechnol 10(2):271–277

    Article  PubMed  CAS  Google Scholar 

  192. Nemunaitis J, Barve M, Orr D, Kuhn J, Magee M, Lamont J et al (2014) Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG) in advanced cancer of the liver. Oncology 87(1):21–29

    Article  CAS  PubMed  Google Scholar 

  193. Jozuka H, Jozuka E, Suzuki M, Takeuchi S, Takatsu Y (2003) Psycho-neuro-immunological treatment of hepatocellular carcinoma with major depression-a single case report. Curr Med Res Opin 19(1):59–63

    Article  CAS  PubMed  Google Scholar 

  194. Shimizu K, Kotera Y, Aruga A, Takeshita N, Katagiri S, Ariizumi S et al (2014) Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. Hum Vaccin Immunother 10(4):970–976

    Article  PubMed  PubMed Central  Google Scholar 

  195. Ebert O, Shinozaki K, Huang TG, Savontaus MJ, Garcia-Sastre A, Woo SLC (2003) Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Res 63(13):3605–3611

    CAS  PubMed  Google Scholar 

  196. Shinozaki K, Ebert O, Woo SLC (2005) Eradication of advanced hepatocellular carcinoma in rats via repeated hepatic arterial infusions of recombinant VSV. Hepatology 41(1):196–203

    Article  PubMed  Google Scholar 

  197. Shinozaki K, Ebert O, Kournioti C, Tai YS, Woo SLC (2004) Oncolysis of multifocal hepatocellular carcinoma in the rat liver by hepatic artery infusion of vesicular stomatitis virus. Mol Ther 9(3):368–376

    Article  CAS  PubMed  Google Scholar 

  198. Altomonte J, Ebert O (2014) Sorting out Pandora’s box: discerning the dynamic roles of liver microenvironment in oncolytic virus therapy for hepatocellular carcinoma. Front Oncol 4:85

    Article  PubMed  PubMed Central  Google Scholar 

  199. Ady JW, Johnsen C, Mojica K, Heffner J, Love D, Pugalenthi A et al (2015) Oncolytic gene therapy with recombinant vaccinia strain GLV-2b372 efficiently kills hepatocellular carcinoma. Surgery 158(2):331–338

    Article  PubMed  PubMed Central  Google Scholar 

  200. Wei D, Li Q, Wang XL, Wang Y, Xu J, Feng F et al (2015) Oncolytic Newcastle disease virus expressing chimeric antibody enhanced anti-tumor efficacy in orthotopic hepatoma-bearing mice. J Exp Clin Cancer Res 34:153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Ma B, Wang Y, Zhou X, Huang P, Zhang R, Liu T et al (2015) Synergistic suppression effect on tumor growth of hepatocellular carcinoma by combining oncolytic adenovirus carrying XAF1 with cisplatin. J Cancer Res Clin Oncol 141(3):419–429

    Article  CAS  PubMed  Google Scholar 

  202. Bai FL, Yu YH, Tian H, Ren GP, Wang H, Zhou B et al (2014) Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biol Ther 15(9):1226–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Bai F, Niu Z, Tian H, Li S, Lv Z, Zhang T et al (2014) Genetically engineered Newcastle disease virus expressing interleukin 2 is a potential drug candidate for cancer immunotherapy. Immunol Lett 159(1–2):36–46

    Article  PubMed  CAS  Google Scholar 

  204. Qian CY, Wang KL, Fang FF, Gu W, Huang F, Wang FZ et al (2015) Triple-controlled oncolytic adenovirus expressing melittin to exert inhibitory efficacy on hepatocellular carcinoma. Int J Clin Exp Pathol 8(9):10403–10411

    PubMed  PubMed Central  Google Scholar 

  205. Wang Y, Liu T, Huang P, Zhao H, Zhang R, Ma B et al (2015) A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. Oncotarget 6(15):13564–13578

    Article  PubMed  PubMed Central  Google Scholar 

  206. Huang F, Ma B, Wang Y, Xiao R, Kong Y, Zhou X et al (2014) Targeting gene-virus-mediated manganese superoxide dismutase effectively suppresses tumor growth in hepatocellular carcinoma in vitro and in vivo. Cancer Biother Radiopharm 29(10):403–411

    Article  CAS  PubMed  Google Scholar 

  207. Mao CY, Hua HJ, Chen P, Yu DC, Cao J, Teng LS (2009) Combined use of chemotherapeutics and oncolytic adenovirus in treatment of AFP-expressing hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 8(3):282–287

    CAS  PubMed  Google Scholar 

  208. Wirth T, Kühnel F, Fleischmann-Mundt B, Woller N, Djojosubroto M, Rudolph KL et al (2005) Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1. Cancer Res 65(16):7393–7402

    Article  CAS  PubMed  Google Scholar 

  209. Boozari B, Mundt B, Woller N, Strüver N, Gürlevik E, Schache P et al (2010) Antitumoural immunity by virus-mediated immunogenic apoptosis inhibits metastatic growth of hepatocellular carcinoma. Gut 59(10):1416–1426

    Article  CAS  PubMed  Google Scholar 

  210. Callegari E, Elamin BK, D’Abundo L, Falzoni S, Donvito G, Moshiri F et al (2013) Anti-tumor activity of a miR-199-dependent oncolytic adenovirus. PLoS ONE 8(9):e73964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sharon D, Schumann M, MacLeod S, McPherson R, Chaurasiya S, Shaw A et al (2013) 2-aminopurine enhances the oncolytic activity of an E1b-deleted adenovirus in hepatocellular carcinoma cells. PLoS ONE 8(6):e65222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. He G, Lei W, Wang S, Xiao R, Guo K, Xia Y et al (2012) Overexpression of tumor suppressor TSLC1 by a survivin-regulated oncolytic adenovirus significantly inhibits hepatocellular carcinoma growth. J Cancer Res Clin Oncol 138(4):657–670

    Article  CAS  PubMed  Google Scholar 

  213. Zhang Y, Fang L, Zhang Q, Zheng Q, Tong J, Fu X et al (2013) An oncolytic adenovirus regulated by a radiation-inducible promoter selectively mediates hSulf-1 gene expression and mutually reinforces antitumor activity of I131-metuximab in hepatocellular carcinoma. Mol Oncol 7(3):346–358

    Article  CAS  PubMed  Google Scholar 

  214. Kung CH, Kuo SC, Chen TL, Weng WS (2015) Isolation of vaccinia JX594 from pustules following therapy for hepatocellular carcinoma. BMC Cancer 15:704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Cripe TP, Ngo MC, Geller JI, Louis CU, Currier MA, Racadio JM et al (2015) Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients. Mol Ther 23(3):602–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Altomonte J, Marozin S, De Toni EN, Rizzani A, Esposito I, Steiger K et al (2013) Antifibrotic properties of transarterial oncolytic VSV therapy for hepatocellular carcinoma in rats with thioacetamide-induced liver fibrosis. Mol Ther 21(11):2032–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Marozin S, Altomonte J, Munoz-Alvarez KA, Rizzani A, De Toni EN, Thasler WE et al (2015) STAT3 inhibition reduces toxicity of oncolytic VSV and provides a potentially synergistic combination therapy for hepatocellular carcinoma. Cancer Gene Ther 22(6):317–325

    Article  CAS  PubMed  Google Scholar 

  218. Sieben M, Herzer K, Zeidler M, Heinrichs V, Leuchs B, Schuler M et al (2008) Killing of p53-deficient hepatoma cells by parvovirus H-1 and chemotherapeutics requires promyelocytic leukemia protein. World J Gastroenterol 14(24):3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lampe J, Bossow S, Weiland T, Smirnow I, Lehmann R, Neubert W et al (2013) An armed oncolytic measles vaccine virus eliminates human hepatoma cells independently of apoptosis. Gene Ther 20(11):1033–1041

    Article  CAS  PubMed  Google Scholar 

  220. Almstatter I, Mykhaylyk O, Settles M, Altomonte J, Aichler M, Walch A et al (2015) Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics 5(7):667–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Altomonte J, Braren R, Schulz S, Marozin S, Rummeny EJ, Schmid RM et al (2008) Synergistic antitumor effects of transarterial viroembolization for multifocal hepatocellular carcinoma in rats. Hepatology 48(6):1864–1873

    Article  PubMed  Google Scholar 

  222. Lai C, Yu X, Zhuo H, Zhou N, Xie Y, He J et al (2014) Anti-tumor immune response of folate-conjugated chitosan nanoparticles containing the IP-10 gene in mice with hepatocellular carcinoma. J Biomed Nanotechnol 10(12):3576–3589

    Article  CAS  PubMed  Google Scholar 

  223. Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA et al (2009) The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther 20(10):1119–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. He H, Fan P, Yin T, Chen Q, Shi H, Liu S et al (2012) Local delivery of recombinant adenovirus expressing hepatitis B virus X protein and interleukin-12 results in antitumor effects via inhibition of hepatoma cell growth and intervention of tumor microenvironment. Int J Mol Med 30(3):599–605

    Article  CAS  PubMed  Google Scholar 

  225. Romero P, Dunbar PR, Valmori D, Ml Pittet, Ogg GS, Rimoldi D et al (1998) Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 188(9):1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Dong H, Chen L (2003) B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med 81(5):281–287

    Article  CAS  PubMed  Google Scholar 

  227. Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5(12):1365–1369

    Article  CAS  PubMed  Google Scholar 

  228. Chen J, Li G, Meng H, Fan Y, Song Y, Wang S et al (2012) Upregulation of B7-H1 expression is associated with macrophage infiltration in hepatocellular carcinomas. Cancer Immunol Immunother 61(1):101–108

    Article  PubMed  CAS  Google Scholar 

  229. Gao Q, Wang X-Y, Qiu S-J, Yamato I, Sho M, Nakajima Y et al (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15(3):971–979

    Article  CAS  PubMed  Google Scholar 

  230. Peng G, Li S, Wu W, Tan X, Chen Y, Chen Z (2008) PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol 45(4):963–970

    Article  CAS  PubMed  Google Scholar 

  231. Golden-Mason L, Palmer B, Klarquist J, Mengshol JA, Castelblanco N, Rosen HR (2007) Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction. J Virol 81(17):9249–9258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106

    Article  CAS  PubMed  Google Scholar 

  233. Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P et al (2013) A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 59(1):81–88

    Article  CAS  PubMed  Google Scholar 

  234. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H et al (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3):799–807

    Article  CAS  PubMed  Google Scholar 

  235. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B et al (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132(7):2328–2339

    Article  PubMed  Google Scholar 

  236. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS et al (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25(18):2586–2593

    Article  PubMed  Google Scholar 

  237. Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y et al (2015) CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61(5):1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hato T, Zhu AX, Duda DG (2016) Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma. Immunotherapy 8(3):299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Sawada Y, Yoshikawa T, Shimomura M, Iwama T, Endo I, Nakatsura T (2015) Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Int J Oncol 46(1):28–36

    Article  CAS  PubMed  Google Scholar 

  240. Yang JD, Abdelmalek MF, Pang H, Guy CD, Smith AD, Diehl AM, Suzuki A (2014) Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology 59(4):1406–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Brady CW (2015) Liver disease in menopause. World J Gastroenterol 21(25):7613–7620

    Article  PubMed  PubMed Central  Google Scholar 

  242. Shi L, Feng Y, Lin H, Ma R, Cai X (2014) Role of estrogen in hepatocellular carcinoma: is inflammation the key? J Transl Med 12:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research Grants R01 HL116042, R01 HL112597, and R01 HL120659 to DK Agrawal from the National Heart, Lung and Blood Institute, National Institutes of Health, USA. The content of this review article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Agrawal.

Ethics declarations

Conflict of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with the financial interest or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, V., Abdo, J., Alsuwaidan, A.N. et al. Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol Cell Biochem 437, 13–36 (2018). https://doi.org/10.1007/s11010-017-3092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3092-z

Keywords

Navigation