Skip to main content

Advertisement

Log in

Angiogenesis: multiple masks in hepatocellular carcinoma and liver regeneration

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is naturally resistant to radiotherapy and cytotoxic chemotherapy, leaving surgery as the mainstream therapeutic approach. However, the 5-year recurrence rate after curative resection is as high as 61.5%. The background hepatitis B- or C-induced cirrhosis and the presence of micrometastases at the time of surgery have been regarded as two main causes of recurrence. Recently, accumulating evidence suggests that growth factors and cytokines released during the physiological process of post-surgical liver regeneration could induce the activation of dormant micrometastatic lesions. The establishment of neovasculature to support either liver regeneration or HCC growth involves multiple cell types including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and circulating endothelial progenitors. The crosstalks among these cells are driven by multiple molecules and signaling pathways, including vascular endothelial growth factors and their receptors, platelet-derived growth factor, the angiopoietin/Tie family, hepatocyte growth factor/c-Met signaling, and others. Anti-angiogenic agent targeting liver cancer vasculature has been reported to be able to generate limited survival benefit of the patients. In this review, discussions are focused on various angiogenic mechanisms of HCC and liver regeneration, as well as the prevailing anti-angiogenic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AAH:

Atypical adenomatous hyperplasia

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EPC:

Endothelial progenitor cell

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HGF:

Hepatocyte growth factor

HIF:

Hypoxia-inducible factor

HSC:

Hepatic stellate cell

LPS:

Lipopolysaccharide

LSEC:

Liver sinusoidal endothelial cell

MMPs:

Matrix metalloproteinases

OAH:

Ordinary adenomatous hyperplasia

PDGF:

Platelet-derived growth factor

PH:

Partial hepatectomy

TGF:

Transforming growth factor

VEGF:

Vascular endothelial growth factor

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55(2):74–108

    PubMed  Google Scholar 

  2. Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, Wang L, Zhou J, Qiu SJ, Li Y, Ji XN, Liu H, Xia JL, Wu ZQ, Fan J, Ma ZC, Zhou XD, Lin ZY, Liu KD. A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol 2004;130(4):187–196

    PubMed  Google Scholar 

  3. Shi M, Zhang CQ, Zhang YQ, Liang XM, Li JQ. Micrometastases of solitary hepatocellular carcinoma and appropriate resection margin. World J Surg 2004;28(4):376–381

    PubMed  Google Scholar 

  4. Tanaka K, Shimada H, Matsumoto C, Matsuo K, Nagano Y, Endo I, Togo S. Anatomic versus limited nonanatomic resection for solitary hepatocellular carcinoma. Surgery 2008;143(5):607–615

    PubMed  Google Scholar 

  5. von Schweinitz D, Faundez A, Teichmann B, Birnbaum T, Koch A, Hecker H, Gluer S, Fuchs J, Pietsch T. Hepatocyte growth-factor-scatter factor can stimulate post-operative tumor-cell proliferation in childhood hepatoblastoma. Int J Cancer 2000;85(2):151–159

    Google Scholar 

  6. Ichihashi H, Mabuchi H, Suenaga M, Kondo T. Liver regeneration and tumor growth in the rat after partial hepatectomy. Jpn J Surg 1984;14(6):510–514

    CAS  PubMed  Google Scholar 

  7. Mizutani J, Hiraoka T, Yamashita R, Miyauchi Y. Promotion of hepatic metastases by liver resection in the rat. Br J Cancer 1992;65(6):794–797

    CAS  PubMed  Google Scholar 

  8. Picardo A, Karpoff HM, Ng B, Lee J, Brennan MF, Fong Y. Partial hepatectomy accelerates local tumor growth: potential roles of local cytokine activation. Surgery 1998;124(1):57–64

    CAS  PubMed  Google Scholar 

  9. Yokoyama H, Goto S, Chen CL, Pan TL, Kawano K, Kitano S. Major hepatic resection may suppress the growth of tumours remaining in the residual liver. Br J Cancer 2000;83(8):1096–1101

    CAS  PubMed  Google Scholar 

  10. Kinoshita S, Hirai R, Yamano T, Yuasa I, Tsukuda K, Shimizu N. Angiogenesis inhibitor TNP-470 can suppress hepatocellular carcinoma growth without retarding liver regeneration after partial hepatectomy. Surg Today 2004;34(1):40–46

    CAS  PubMed  Google Scholar 

  11. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 2006;43 2 Suppl. 1:S45–S53

    CAS  PubMed  Google Scholar 

  12. Christophi C, Harun N, Fifis T. Liver regeneration and tumor stimulation: a review of cytokine and angiogenic factors. J Gastrointest Surg 2008;12(5):966–980

    PubMed  Google Scholar 

  13. Naumov GN, Akslen LA, Folkman J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 2006;5(16):1779–1787

    CAS  PubMed  Google Scholar 

  14. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007;7(11):834–846

    CAS  PubMed  Google Scholar 

  15. Indraccolo S, Favaro E, Amadori A. Dormant tumors awaken by a short-term angiogenic burst: the spike hypothesis. Cell Cycle 2006;5(16):1751–1755

    Google Scholar 

  16. Harun N, Nikfarjam M, Muralidharan V, Christophi C. Liver regeneration stimulates tumor metastases. J Surg Res 2007;138(2):284–290

    PubMed  Google Scholar 

  17. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 2007;11(6):539–554

    CAS  PubMed  Google Scholar 

  18. Drixler TA, Vogten MJ, Ritchie ED, van Vroonhoven TJ, Gebbink MF, Voest EE, Borel Rinkes IH. Liver regeneration is an angiogenesis-associated phenomenon. Ann Surg 2002;236(6):703–711 (discussion 711–702)

    PubMed  Google Scholar 

  19. Michalopoulos GK, DeFrances MC. Liver regeneration. Science 1997;276(5309):60–66

    CAS  PubMed  Google Scholar 

  20. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 2004;5(10):836–847

    CAS  PubMed  Google Scholar 

  21. Wisse E, De Zanger RB, Charels K, Van Der Smissen P, McCuskey RS. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 1985;5(4):683–692

    CAS  PubMed  Google Scholar 

  22. Lee JS, Semela D, Iredale J, Shah VH. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology 2007;45(3):817–825

    CAS  PubMed  Google Scholar 

  23. Semela D, Das A, Langer D, Kang N, Leof E, Shah V. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology 2008;135(2):671–679

    CAS  PubMed  Google Scholar 

  24. Wack KE, Ross MA, Zegarra V, Sysko LR, Watkins SC, Stolz DB. Sinusoidal ultrastructure evaluated during the revascularization of regenerating rat liver. Hepatology 2001;33(2):363–378

    CAS  PubMed  Google Scholar 

  25. Ross MA, Sander CM, Kleeb TB, Watkins SC, Stolz DB. Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver Hepatology. 2001;34(6):1135–1148

    CAS  PubMed  Google Scholar 

  26. Maeno H, Ono T, Dhar DK, Sato T, Yamanoi A, Nagasue N. Expression of hypoxia inducible factor-1alpha during liver regeneration induced by partial hepatectomy in rats. Liver Int 2005;25(5):1002–1009

    CAS  PubMed  Google Scholar 

  27. Redaelli CA, Semela D, Carrick FE, Ledermann M, Candinas D, Sauter B, Dufour JF. Effect of vascular endothelial growth factor on functional recovery after hepatectomy in lean and obese mice. J Hepatol 2004;40(2):305–312

    CAS  PubMed  Google Scholar 

  28. Yim SH, Shah Y, Tomita S, Morris HD, Gavrilova O, Lambert G, Ward JM, Gonzalez FJ. Disruption of the Arnt gene in endothelial cells causes hepatic vascular defects and partial embryonic lethality in mice. Hepatology 2006;44(3):550–560

    CAS  PubMed  Google Scholar 

  29. Taniguchi E, Sakisaka S, Matsuo K, Tanikawa K, Sata M. Expression and role of vascular endothelial growth factor in liver regeneration after partial hepatectomy in rats. J Histochem Cytochem 2001;49(1):121–130

    CAS  PubMed  Google Scholar 

  30. Shimizu H, Miyazaki M, Wakabayashi Y, Mitsuhashi N, Kato A, Ito H, Nakagawa K, Yoshidome H, Kataoka M, Nakajima N. Vascular endothelial growth factor secreted by replicating hepatocytes induces sinusoidal endothelial cell proliferation during regeneration after partial hepatectomy in rats. J Hepatol 2001;34(5):683–689

    CAS  PubMed  Google Scholar 

  31. Yokomori H, Oda M, Yoshimura K, Nagai T, Ogi M, Nomura M, Ishii H. Vascular endothelial growth factor increases fenestral permeability in hepatic sinusoidal endothelial cells. Liver Int 2003;23(6):467–475

    CAS  PubMed  Google Scholar 

  32. Sato T, El-Assal ON, Ono T, Yamanoi A, Dhar DK, Nagasue N. Sinusoidal endothelial cell proliferation and expression of angiopoietin/Tie family in regenerating rat liver. J Hepatol 2001;34(5):690–698

    CAS  PubMed  Google Scholar 

  33. Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology 2000;31(1):141–148

    CAS  PubMed  Google Scholar 

  34. LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP, Hillan KJ, Ferrara N. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 2003;299(5608):890–893

    CAS  PubMed  Google Scholar 

  35. Neufeld G, Kessler O, Herzog Y. The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. Adv Exp Med Biol 2002;515:81–90

    CAS  PubMed  Google Scholar 

  36. Braet F, Shleper M, Paizi M, Brodsky S, Kopeiko N, Resnick N, Spira G. Liver sinusoidal endothelial cell modulation upon resection and shear stress in vitro. Comp Hepatol 2004;3(1):7

    PubMed  Google Scholar 

  37. Unemori EN, Ferrara N, Bauer EA, Amento EP. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol 1992;153(3):557–562

    CAS  PubMed  Google Scholar 

  38. Zucker S, Mirza H, Conner CE, Lorenz AF, Drews MH, Bahou WF, Jesty J. Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int J Cancer 1998;75(5):780–786

    CAS  PubMed  Google Scholar 

  39. Pepper MS, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 1991;181(2):902–906

    CAS  PubMed  Google Scholar 

  40. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995;376(6535):70–74

    CAS  PubMed  Google Scholar 

  41. Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J 1995;14(23):5884–5891

    CAS  PubMed  Google Scholar 

  42. Michalopoulos GK. Liver regeneration. J Cell Physiol 2007;213(2):286–300

    CAS  PubMed  Google Scholar 

  43. Balabaud C, Bioulac-Sage P, Desmouliere A. The role of hepatic stellate cells in liver regeneration. J Hepatol 2004;40(6):1023–1026

    CAS  PubMed  Google Scholar 

  44. Budny T, Palmes D, Stratmann U, Minin E, Herbst H, Spiegel HU. Morphologic features in the regenerating liver—a comparative intravital, lightmicroscopical and ultrastructural analysis with focus on hepatic stellate cells. Virchows Arch 2007;451(4):781–791

    PubMed  Google Scholar 

  45. Mabuchi A, Mullaney I, Sheard PW, Hessian PA, Mallard BL, Tawadrous MN, Zimmermann A, Senoo H, Wheatley AM. Role of hepatic stellate cell/hepatocyte interaction and activation of hepatic stellate cells in the early phase of liver regeneration in the rat. J Hepatol 2004;40(6):910–916

    CAS  PubMed  Google Scholar 

  46. Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 1999;18(38):5356–5362

    CAS  PubMed  Google Scholar 

  47. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277(5322):55–60

    CAS  PubMed  Google Scholar 

  48. Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997;277(5322):48–50

    CAS  PubMed  Google Scholar 

  49. Shimizu H, Mitsuhashi N, Ohtsuka M, Ito H, Kimura F, Ambiru S, Togawa A, Yoshidome H, Kato A, Miyazaki M. Vascular endothelial growth factor and angiopoietins regulate sinusoidal regeneration and remodeling after partial hepatectomy in rats. World J Gastroenterol 2005;11(46):7254–7260

    CAS  PubMed  Google Scholar 

  50. Kraizer Y, Mawasi N, Seagal J, Paizi M, Assy N, Spira G. Vascular endothelial growth factor and angiopoietin in liver regeneration. Biochem Biophys Res Commun 2001;287(1):209–215

    CAS  PubMed  Google Scholar 

  51. Greene AK, Wiener S, Puder M, Yoshida A, Shi B, Perez-Atayde AR, Efstathiou JA, Holmgren L, Adamis AP, Rupnick M, Folkman J, O’Reilly MS. Endothelial-directed hepatic regeneration after partial hepatectomy. Ann Surg 2003;237(4):530–535

    PubMed  Google Scholar 

  52. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007;6(4):273–286

    CAS  PubMed  Google Scholar 

  53. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005;42(5):1208–1236

    PubMed  Google Scholar 

  54. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis 2001;21(3):397–416

    CAS  PubMed  Google Scholar 

  55. Sakamoto M, Hirohashi S, Shimosato Y. Early stages of multistep hepatocarcinogenesis: adenomatous hyperplasia and early hepatocellular carcinoma. Hum Pathol 1991;22(2):172–178

    CAS  PubMed  Google Scholar 

  56. Himeno H, Enzan H, Saibara T, Onishi S, Yamamoto Y. Hitherto unrecognized arterioles within hepatocellular carcinoma. J Pathol 1994;174(3):217–222

    CAS  PubMed  Google Scholar 

  57. Kin M, Torimura T, Ueno T, Inuzuka S, Tanikawa K. Sinusoidal capillarization in small hepatocellular carcinoma. Pathol Int 1994;44(10–11):771–778

    CAS  PubMed  Google Scholar 

  58. Park YN, Kim YB, Yang KM, Park C. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med 2000;124(7):1061–1065

    CAS  PubMed  Google Scholar 

  59. Hayashi M, Matsui O, Ueda K, Kawamori Y, Kadoya M, Yoshikawa J, Gabata T, Takashima T, Nonomura A, Nakanuma Y. Correlation between the blood supply and grade of malignancy of hepatocellular nodules associated with liver cirrhosis: evaluation by CT during intraarterial injection of contrast medium. AJR Am J Roentgenol 1999;172(4):969–976

    CAS  PubMed  Google Scholar 

  60. Yamasaki M, Ikeda K, Nakatani K, Yamamoto T, Kawai Y, Hirohashi K, Kinoshita H, Kaneda K. Phenotypical and morphological alterations to rat sinusoidal endothelial cells in arterialized livers after portal branch ligation. Arch Histol Cytol 1999;62(5):401–411

    CAS  PubMed  Google Scholar 

  61. Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, Housset C, Rosmorduc O. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002;35(5):1010–1021

    CAS  PubMed  Google Scholar 

  62. Fernandez M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol 2009;50(3):604–620

    CAS  PubMed  Google Scholar 

  63. Kim KR, Moon HE, Kim KW. Hypoxia-induced angiogenesis in human hepatocellular carcinoma. J Mol Med 2002;80(11):703–714

    CAS  PubMed  Google Scholar 

  64. Moon EJ, Jeong CH, Jeong JW, Kim KR, Yu DY, Murakami S, Kim CW, Kim KW. Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1alpha. FASEB J 2004;18(2):382–384

    CAS  PubMed  Google Scholar 

  65. von Marschall Z, Cramer T, Hocker M, Finkenzeller G, Wiedenmann B, Rosewicz S. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut 2001;48(1):87–96

    Google Scholar 

  66. Yoshiji H, Kuriyama S, Hicklin DJ, Huber J, Yoshii J, Miyamoto Y, Kawata M, Ikenaka Y, Nakatani T, Tsujinoue H, Fukui H. KDR/Flk-1 is a major regulator of vascular endothelial growth factor-induced tumor development and angiogenesis in murine hepatocellular carcinoma cells. Hepatology 1999;30(5):1179–1186

    CAS  PubMed  Google Scholar 

  67. Shimamura T, Saito S, Morita K, Kitamura T, Morimoto M, Kiba T, Numata K, Tanaka K, Sekihara H. Detection of vascular endothelial growth factor and its receptor expression in human hepatocellular carcinoma biopsy specimens. J Gastroenterol Hepatol 2000;15(6):640–646

    CAS  PubMed  Google Scholar 

  68. Yamaguchi R, Yano H, Nakashima Y, Ogasawara S, Higaki K, Akiba J, Hicklin DJ, Kojiro M. Expression and localization of vascular endothelial growth factor receptors in human hepatocellular carcinoma and non-HCC tissues. Oncol Rep 2000;7(4):725–729

    CAS  PubMed  Google Scholar 

  69. Raskopf E, Dzienisowicz C, Hilbert T, Rabe C, Leifeld L, Wernert N, Sauerbruch T, Prieto J, Qian C, Caselmann WH, Schmitz V. Effective angiostatic treatment in a murine metastatic and orthotopic hepatoma model. Hepatology 2005;41(6):1233–1240

    CAS  PubMed  Google Scholar 

  70. Nakamura K, Zen Y, Sato Y, Kozaka K, Matsui O, Harada K, Nakanuma Y. Vascular endothelial growth factor, its receptor Flk-1, and hypoxia inducible factor-1alpha are involved in malignant transformation in dysplastic nodules of the liver. Hum Pathol 2007;38(10):1532–1546

    CAS  PubMed  Google Scholar 

  71. Ng IO, Poon RT, Lee JM, Fan ST, Ng M, Tso WK. Microvessel density, vascular endothelial growth factor and its receptors Flt-1 and Flk-1/KDR in hepatocellular carcinoma. Am J Clin Pathol 2001;116(6):838–845

    CAS  PubMed  Google Scholar 

  72. Dhar DK, Naora H, Yamanoi A, Ono T, Kohno H, Otani H, Nagasue N. Requisite role of VEGF receptors in angiogenesis of hepatocellular carcinoma: a comparison with angiopoietin/Tie pathway. Anticancer Res 2002;22(1A):379–386

    CAS  PubMed  Google Scholar 

  73. Yoshiji H, Noguchi R, Kuriyama S, Yoshii J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Yamazaki M, Uemura M, Fukui H. Different cascades in the signaling pathway of two vascular endothelial growth factor (VEGF) receptors for the VEGF-mediated murine hepatocellular carcinoma development. Oncol Rep 2005;13(5):853–857

    CAS  PubMed  Google Scholar 

  74. Sugimachi K, Tanaka S, Taguchi K, Aishima S, Shimada M, Tsuneyoshi M. Angiopoietin switching regulates angiogenesis and progression of human hepatocellular carcinoma. J Clin Pathol 2003;56(11):854–860

    CAS  PubMed  Google Scholar 

  75. Torimura T, Ueno T, Kin M, Harada R, Taniguchi E, Nakamura T, Sakata R, Hashimoto O, Sakamoto M, Kumashiro R, Sata M, Nakashima O, Yano H, Kojiro M. Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J Hepatol 2004;40(5):799–807

    CAS  PubMed  Google Scholar 

  76. Zhang ZL, Liu ZS, Sun Q. Expression of angiopoietins, Tie2 and vascular endothelial growth factor in angiogenesis and progression of hepatocellular carcinoma. World J Gastroenterol 2006;12(26):4241–4245

    CAS  PubMed  Google Scholar 

  77. Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Uemura M, Masaki T, Fukui H. Angiopoietin 2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut 2005;54(12):1768–1775

    CAS  PubMed  Google Scholar 

  78. Zeng W, Gouw AS, van den Heuvel MC, Zwiers PJ, Zondervan PE, Poppema S, Zhang N, Platteel I, de Jong KP, Molema G. The angiogenic makeup of human hepatocellular carcinoma does not favor vascular endothelial growth factor/angiopoietin-driven sprouting neovascularization. Hepatology 2008;48(5):1517–1527

    CAS  PubMed  Google Scholar 

  79. Semela D, Piguet AC, Kolev M, Schmitter K, Hlushchuk R, Djonov V, Stoupis C, Dufour JF. Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol 2007;46(5):840–848

    CAS  PubMed  Google Scholar 

  80. Djonov V, Schmid M, Tschanz SA, Burri PH. Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 2000;86(3):286–292

    CAS  PubMed  Google Scholar 

  81. Olszewska-Pazdrak B, Hein TW, Olszewska P, Carney DH. Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells. Am J Physiol Cell Physiol 2009;296(5):C1162–C1170

    CAS  PubMed  Google Scholar 

  82. Weng J, Gouw AS, Heuvel MC, Poppema S, Jong KP. Angiogenic characteristics in hepatocellular carcinomas: a comparison of HCCs in cirrhotic and non-cirrhotic livers and the influence of grading. Hepatology 2006;44 Suppl 1:506A (abstract)

    Google Scholar 

  83. Ho JW, Pang RW, Lau C, Sun CK, Yu WC, Fan ST, Poon RT. Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 2006;44(4):836–843

    CAS  PubMed  Google Scholar 

  84. Yu D, Sun X, Qiu Y, Zhou J, Wu Y, Zhuang L, Chen J, Ding Y. Identification and clinical significance of mobilized endothelial progenitor cells in tumor vasculogenesis of hepatocellular carcinoma. Clin Cancer Res 2007;13(13):3814–3824

    CAS  PubMed  Google Scholar 

  85. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999;155(3):739–752

    CAS  PubMed  Google Scholar 

  86. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, Wang XH, Du J, Liu YX, Sun BC. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 2010;51(2):545–556

    Google Scholar 

  87. Sun B, Zhang S, Zhang D, Du J, Guo H, Zhao X, Zhang W, Hao X. Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma. Oncol Rep 2006;16(4):693–698

    CAS  PubMed  Google Scholar 

  88. Guzman G, Cotler SJ, Lin AY, Maniotis AJ, Folberg R. A pilot study of vasculogenic mimicry immunohistochemical expression in hepatocellular carcinoma. Arch Pathol Lab Med 2007;131(12):1776–1781

    PubMed  Google Scholar 

  89. Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 2007;26(3,4):489–502

    PubMed  Google Scholar 

  90. Wesseling P, van der Laak JA, de Leeuw H, Ruiter DJ, Burger PC. Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections. J Neurosurg 1994;81(6):902–909

    CAS  PubMed  Google Scholar 

  91. Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, Menard S, Gatter KC, Harris AL, Fox S, Buyse M, Pilotti S, Pierotti M, Rilke F. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 1997;151(5):1417–1423

    CAS  PubMed  Google Scholar 

  92. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284(5422):1994–1998

    CAS  PubMed  Google Scholar 

  93. Nakamura S, Muro H, Suzuki S, Sakaguchi T, Konno H, Baba S, Syed AS. Immunohistochemical studies on endothelial cell phenotype in hepatocellular carcinoma. Hepatology 1997;26(2):407–415

    CAS  PubMed  Google Scholar 

  94. Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van Den Heuvel E, Goovaerts G, Dirix LY, Van Marck E. Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol 2001;195(3):336–342

    CAS  PubMed  Google Scholar 

  95. Kanai T, Hirohashi S, Upton MP, Noguchi M, Kishi K, Makuuchi M, Yamasaki S, Hasegawa H, Takayasu K, Moriyama N, et al. Pathology of small hepatocellular carcinoma. A proposal for a new gross classification. Cancer 1987;60(4):810–819

    CAS  PubMed  Google Scholar 

  96. Scavelli C, Weber E, Agliano M, Cirulli T, Nico B, Vacca A, Ribatti D. Lymphatics at the crossroads of angiogenesis and lymphangiogenesis. J Anat 2004;204(6):433–449

    CAS  PubMed  Google Scholar 

  97. Mouta Carreira C, Nasser SM, di Tomaso E, Padera TP, Boucher Y, Tomarev SI, Jain RK. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res 2001;61(22):8079–8084

    CAS  PubMed  Google Scholar 

  98. Thelen A, Jonas S, Benckert C, Weichert W, Schott E, Botcher C, Dietz E, Wiedenmann B, Neuhaus P, Scholz A. Tumor-associated lymphangiogenesis correlates with prognosis after resection of human hepatocellular carcinoma. Ann Surg Oncol 2009;16(5):1222–1230

    PubMed  Google Scholar 

  99. Thelen A, Scholz A, Benckert C, von Marschall Z, Schroder M, Wiedenmann B, Neuhaus P, Rosewicz S, Jonas S. VEGF-D promotes tumor growth and lymphatic spread in a mouse model of hepatocellular carcinoma. Int J Cancer 2008;122(11):2471–2481

    CAS  PubMed  Google Scholar 

  100. Ohtani O, Ohtani Y. Lymph circulation in the liver. Anat Rec (Hoboken) 2008;291(6):643–652

    Google Scholar 

  101. Lian Z, Liu J, Wu M, Wang HY, Arbuthnot P, Kew M, Feitelson MA. Hepatitis B × antigen up-regulates vascular endothelial growth factor receptor 3 in hepatocarcinogenesis. Hepatology 2007;45(6):1390–1399

    CAS  PubMed  Google Scholar 

  102. Yamaguchi R, Yano H, Nakashima O, Akiba J, Nishida N, Kurogi M, Kojiro M. Expression of vascular endothelial growth factor-C in human hepatocellular carcinoma. J Gastroenterol Hepatol 2006;21 Pt 1:152–160

    CAS  PubMed  Google Scholar 

  103. Gasparini G, Longo R, Fanelli M, Teicher BA. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J Clin Oncol 2005;23(6):1295–1311

    CAS  PubMed  Google Scholar 

  104. Greten TF, Korangy F, Manns MP, Malek NP. Molecular therapy for the treatment of hepatocellular carcinoma. Br J Cancer 2009;100(1):19–23

    CAS  PubMed  Google Scholar 

  105. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J. Sorafenib in advanced hepatocellular carcinoma. New Engl J Med 2008;359(4):378–390

    CAS  PubMed  Google Scholar 

  106. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009;10(1):25–34

    CAS  PubMed  Google Scholar 

  107. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer 2005;5(6):423–435

    CAS  PubMed  Google Scholar 

  108. Baguley BC. Antivascular therapy of cancer: DMXAA. Lancet Oncol 2003;4(3):141–148

    CAS  PubMed  Google Scholar 

  109. Huynh H, Chow KP, Soo KC, Toh HC, Choo SP, Foo KF, Poon D, Ngo VC, Tran E. RAD001 (everolimus) inhibits tumor growth in xenograft models of human hepatocellular carcinoma. J Cell Mol Med 2009;13(7):1371–1380

    CAS  PubMed  Google Scholar 

  110. Semela D, Dufour JF. Angiogenesis and hepatocellular carcinoma. J Hepatol 2004;41(5):864–880

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Nadziejka of Van Andel Research Institute, Grand Rapids, Michigan, for technical editing of the manuscript. This work is funded by National Key Sci-Tech Special Project of China (No. 2008ZX10002-019).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Nan Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JA., Shi, M., Li, JQ. et al. Angiogenesis: multiple masks in hepatocellular carcinoma and liver regeneration. Hepatol Int 4, 537–547 (2010). https://doi.org/10.1007/s12072-010-9192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-010-9192-4

Keywords

Navigation