Skip to main content
Log in

Alteration of hedgehog signaling by chronic exposure to different pesticide formulations and unveiling the regenerative potential of recombinant sonic hedgehog in mouse model of bone marrow aplasia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chronic pesticide exposure-induced downregulation of hedgehog signaling and its subsequent degenerative effects on the mammalian hematopoietic system have not been investigated yet. However a number of concurrent studies have pointed out the positive correlation between chronic pesticide exposure induced bone marrow failure and immune suppression. Here, we have given an emphasis on the recapitulation of human marrow aplasia like condition in mice by chronic mixed pesticide exposures and simultaneously unravel the role of individual pesticides in the said event. Unlike the effect of mixed pesticide, individual pesticides differentially alter the hedgehog signaling in the bone marrow primitive hematopoietic compartment (Sca1 + compartment) and stromal compartment. Individually, hexaconazole disrupted hematopoietic as well as stromal hedgehog signaling activation through inhibiting SMO and facilitating PKC δ expression. On contrary, both chlorpyriphos and cypermethrin increased the sequestration and degradation of GLI1 by upregulating SU(FU) and βTrCP, respectively. However, cypermethrin-mediated inhibition of hedgehog signaling has partly shown to be circumvented by non-canonical activation of GLI1. Finally, we have tested the regenerative response of sonic hedgehog and shown that in vitro supplemented recombinant SHH protein augmented clonogenic stromal progenitors (CFU-F) as well as primitive multipotent hematopoietic clones including CFU-GEMM and CFU-GM of mixed pesticide-induced aplastic marrow. It is an indication of the marrow regeneration. Finally, our findings provide a gripping evidence that downregulated hedgehog signaling contribute to pesticide-mediated bone marrow aplasia but it could be recovered by proper supplementation of recombinant SHH along with hematopoietic base cocktail. Furthermore, SU(FU) and GLI1 can be exploited as future theradiagnostic markers for early marrow aplasia diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Casale GP, Cohen SD, DiCapua RA (1983) The effects of organophosphate-induced cholinergic stimulation on the antibody response to sheep erythrocytes in inbred mice. Toxicol Appl Pharmacol 68:198–205

    Article  CAS  PubMed  Google Scholar 

  2. Li AA, Lowe KA, McInstosh LJ, Mink PJ (2012) Evaluation of epidemiology and animal data for risk assessment: chlorpyrifos developmental neurobehavioral outcomes. J Toxicol Environ Health B Crit Rev 15:109–184. doi:10.1080/10937404.2012.645142

    Article  PubMed Central  PubMed  Google Scholar 

  3. Liu J, Pope CN (1998) Comparative presynaptic neurochemical changes in rat striatum following exposure to chlorpyrifos or parathion. J Toxicol Environ Health A 53:531–544

    Article  CAS  PubMed  Google Scholar 

  4. Bagchi D, Bagchi M, Tang L, Stohs SJ (1997) Comparative in vitro and in vivo protein kinase C activation by selected pesticides and transition metal salts. Toxicol Lett 91:31–37

    Article  CAS  PubMed  Google Scholar 

  5. Maurya SK, Rai A, Rai NK, Deshpande S, Jain R, Mudiam MKR, Prabhakar YS, Bandyopadhyay S (2012) Cypermethrin induces astrocyte apoptosis by the disruption of the autocrine/paracrine mode of epidermal growth factor receptor signaling. Toxicol Sci 125:473–487. doi:10.1093/toxsci/kfr303

    Article  CAS  PubMed  Google Scholar 

  6. Crumpton TL, Seidler FJ, Slotkin TA (2000) Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Brain Res 121:189–195

    Article  CAS  Google Scholar 

  7. Zhou JF, Xu GB, Fang WJ (2002) Relationship between acute organophosphorus pesticide poisoning and damages induced by free radicals. Biomed Environ Sci 15:177–186

    PubMed  Google Scholar 

  8. Joshi SC, Mathur R, Gulati N (2007) Testicular toxicity of chlorpyrifos (an organo phosphate pesticide) in albino rat. Toxicol Ind Health 23:439–444

    Article  CAS  PubMed  Google Scholar 

  9. Schuh RA, Lein PJ, Beckles R, Jett DA (2002) Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: altered phosphorylation of Ca2 +/cAMP response element binding protein in cultured neurons. Toxicol Appl Pharmacol 182:176–185

    Article  CAS  PubMed  Google Scholar 

  10. Slotkin TA, Seidler FJ (2009) Protein kinase C is a target for diverse developmental neurotoxicants: transcriptional responses to chlorpyrifos, diazinon, dieldrin and divalent nickel in PC12 cells. Brain Res 1263:23–32. doi:10.1016/j.brainres.2009.01.049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Street JC, Sharma RP (1975) Alteration of induced cellular and humoral immune responses by pesticides and chemicals of environmental concern: quantitative studies of immunosuppression by DDT, Aroclor 1254, carbaryl, carbofuran, and methylparathion. Toxicol Appl Pharmacol 32:587–602

    Article  CAS  PubMed  Google Scholar 

  12. Casale GP, Bavari S, Connolly JJ (1989) Inhibition of human serum complement activity by diisopropylfluorophosphate and selected anticholinesterase insecticides. Fund Appl Toxicol 12:460–468

    Article  CAS  Google Scholar 

  13. Ercegovich CD (1973) Relationships of pesticides to immune responses. Fed Proc 32:2010–2016

    CAS  PubMed  Google Scholar 

  14. Galloway T, Handy R (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12:345–363

    Article  CAS  PubMed  Google Scholar 

  15. Kowalczyk-Bronisz S, Gieldanowski J, Bubak B, Kotz J (1992) Studies on effect of pesticide Chlorfenwinfos on mouse immune system. Arch Immunol Ther Exp 40:283–289

    CAS  Google Scholar 

  16. Kojima H, Muromoto R, Takahashi M, Takeuchi S, Takeda Y, Jetten AM, Matsuda T (2012) Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ. Toxicol Appl Pharmacol 259:338–345. doi:10.1016/j.taap.2012.01.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chauhan LK, Kumar M, Paul BN, Goel SK, Gupta SK (2007) Cytogenetic effects of commercial formulations of deltamethrin and/or isoproturon on human peripheral lymphocytes and mouse bone marrow cells. Environ Mol Mutagen 48:636–643

    Article  CAS  PubMed  Google Scholar 

  18. Jamil K, Shaik AP, Mahboob M, Krishna D (2004) Effect of organophosphorus and organochlorine pesticides (monocrotophos, chloropyriphos, dimethoate and endosulfan) on human lymphocyte cultures in vitro. Drug Chem Toxicol 27:133–144

    Article  CAS  PubMed  Google Scholar 

  19. Issaragrisil S, Chansung K, Kaufman DW, Sirijirachai J, Thamprasit T, Young NS (1997) Aplastic anemia in rural Thailand, its association with grain farming and agricultural pesticide exposure. Am J Public Health 87:1551–1554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Law S, Basu K, Banerjee S, Begum B, Chaudhuri S (2006) Cord blood derived plasma factor (CBPF) potentiated the low cytokinetic and immunokinetic profile of bone marrow cells in pesticide victims suffering from acquired aplastic anaemia (AAA): an in vitro correlate. Immunol Invest 35:209–225

    Article  CAS  PubMed  Google Scholar 

  21. Muir KR, Chilvers CED, Harriss C, Coulson L, Grainge M, Darbyshire P, Geary CJ, Hows J, Marsh T, Rutherford M, Taylor E, Gordon-Smith EC (2003) The role of occupational and environmental exposures in the aetiology of acquired severe aplastic anaemia: a case control investigation. Br J Haematol 123:906–914

    Article  CAS  PubMed  Google Scholar 

  22. Prihartono N, Kriebel D, Woskie S, Thetkhathuek A, Sripaung N, Padungtod C, Kaufman D (2011) Risk of aplastic anemia and pesticide and other chemical exposures. Asia Pac J Public Health 23:369–377. doi:10.1177/1010539511403605

    Article  PubMed  Google Scholar 

  23. Wysocki J, Kalina Z, Owczarzy I (1987) Effect of organophosphoric pesticides on the behaviour of NBT-dye reduction and E rosette formation tests in human blood. Int Arch Occup Environ Health 59:63–71

    Article  CAS  PubMed  Google Scholar 

  24. Young NS, Issaragrisil S, Ch’en WC, Takaku F (1986) Aplastic anemia in the Orient. Br J Haematol 62:1–6

    Article  CAS  PubMed  Google Scholar 

  25. Chatterjee S, Chaklader M, Basak P, Das P, Das M, Pereira JA, Dutta RK, Chaudhuri S, Law S (2010) An animal model of chronic aplastic bone marrow failure following pesticide exposure in mice. Int J Stem Cell 3:54–62

    Article  CAS  Google Scholar 

  26. Chatterjee S, Basak P, Chaklader M, Das P, Pereira JA, Chaudhuri S, Law S (2013) Pesticide induced marrow toxicity and effects on marrow cell population and on hematopoietic stroma. Exp Toxicol Pathol 65:287–295. doi:10.1016/j.etp.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  27. Chatterjee S, Basak P, Chaklader M, Das P, Pereira JA, Chaudhuri S, Law S (2014) Pesticide induced alterations in marrow physiology and depletion of stem and stromal progenitor population: an experimental model to study the toxic effects of pesticide. Environ Toxicol 29:84–97. doi:10.1002/tox.20775

    Article  CAS  PubMed  Google Scholar 

  28. Chaklader M, Das P, Pereira JA, Chaudhuri S, Law S (2012) Altered canonical Hedgehog-Gli signaling axis in pesticide-induced bone marrow aplasia mouse model. Arh Hig Rada Toksikol 63:271–282. doi:10.2478/10004-1254-63-2012-2255

    Article  CAS  PubMed  Google Scholar 

  29. Cridland SO, Keys JR, Papathanasiou P, Perkins AC (2009) Indian hedgehog supports definitive erythropoiesis. Blood Cells Mol Dis 43:149–155. doi:10.1016/j.bcmd.2009

    Article  CAS  PubMed  Google Scholar 

  30. Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH (2001) Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 128:1717–1730

    CAS  PubMed  Google Scholar 

  31. Farrington SM, Belaoussoff M, Baron MH (1997) Winged-helix, Hedgehog and Bmp genes are differentially expressed in distinct cell layers of the murine yolk sac. Mech Dev 62:197–211

    Article  CAS  PubMed  Google Scholar 

  32. Kalderon D (2000) Transducing the hedgehog signal. Cell 103:371–374

    Article  CAS  PubMed  Google Scholar 

  33. Taipale J, Cooper MK, Maiti T, Beachy PA (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418:892–897

    Article  CAS  PubMed  Google Scholar 

  34. Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE (2006) Dual degradation signals control Gli protein stability and tumor formation. Gene Dev 20:276–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hofmann I, Stover EH, Cullen DE, Mao J, Morgan KJ, Lee BH, Kharas MG, Miller PG, Cornejo MG, Okabe R, Armstong SA, Ghilardi N, Gould S, Sauvage FJ, McMahon AP, Gilliland DG (2009) Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell 4:559–567. doi:10.1016/j.stem.2009.03.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gao J, Graves S, Koch U, Liu S, Jankovic V, Buonamici S, Andaloussi AE, Nimer SD, Kee BL, Taichman R, Radtke F, Aifantis I (2009) Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell 4:548–558. doi:10.1016/j.stem.2009.03.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Trowbridge JJ, Scott MP, Bhatia M (2006) Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci USA 103:14134–14139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Graeff AS, Landwerlin K, Veelken H, Warmuth M (2008) Expansion of Bcr-Abl-Positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14:238–249

    Article  CAS  PubMed  Google Scholar 

  39. Bhardwaj G, Murdoch B, Wu D, Williams KP, Chadwick K, Ling LE, Karanu FN, Bhatia M (2001) Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol 2:172–180

    Article  CAS  Google Scholar 

  40. Detmer K, Thompson AJ, Garner RE, Walker AN, Gaffield W, Dannaw H (2005) Hedgehog signaling and cell cycle control in differentiating erythroid progenitors. Blood Cells Mol Dis 34:60–70

    Article  CAS  PubMed  Google Scholar 

  41. Merchant A, Joseph G, Wang O, Brennan S, Matsui W (2010) Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood 115:2391–2396. doi:10.1182/blood-2009-09-241703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Merchant AA, Matsui W (2009) Smoothening the controversial role of hedgehog in hematopoiesis. Cell Stem Cell 4:470–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sengupta A, Banerjee D, Chandra S, Banerji SK, Ghosh R, Roy R, Banerjee S (2007) Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 21:949–955

    CAS  PubMed  Google Scholar 

  44. Pan Y, Wang B (2007) [2007] A Novel protein-processing domain in Gli2 and Gli3 differentially blocks complete protein degradation by the proteasome. J Biol Chem 282:10846–10852

    Article  CAS  PubMed  Google Scholar 

  45. Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, Chong CR, Chang KS, Fereshteh M, Gardner D, Reya T, Liu JO, Epstein EH, David A, Stevens DA, Beachy PA (2010) Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth. Cancer Cell 17:388–399. doi:10.1016/j.ccr.2010.02.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, Calcutta School of Tropical Medicine.

Conflict of interest

The authors declare that they do not have any competing or financial interests.

Funding

This work is supported by the Council for Scientific and Industrial Research, Government of India (No. 37(1429)/10/EMRII).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Law.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaklader, M., Law, S. Alteration of hedgehog signaling by chronic exposure to different pesticide formulations and unveiling the regenerative potential of recombinant sonic hedgehog in mouse model of bone marrow aplasia. Mol Cell Biochem 401, 115–131 (2015). https://doi.org/10.1007/s11010-014-2299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2299-5

Keywords

Navigation