Skip to main content
Log in

Microenvironmental Scenario of the Bone Marrow of Inorganic Arsenic-Exposed Experimental Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Exposure to arsenic on a regular basis, mainly through drinking water, agricultural pesticide, and sometimes therapeutic dose, results in various diseases of different tissues including the bone marrow hematopoietic system. Hematopoiesis is a dynamic process by which bone marrow (BM) hematopoietic stem/progenitor cells (HSPCs) generate a relatively constant pool of functionally mature blood cells by the support of microenvironmental components. The present study has been aimed to understand stem cell microenvironmental status during arsenic toxicity and the consequent reflection of dysregulation involving the hematopoietic machinery in experimental mice. Swiss albino mice were experimentally exposed to 10 μg arsenic trioxide/g body weight through oral gavage and 5 μg arsenic trioxide/g body weight intraperitoneally for a period of 30 days. Altered hemogram values in peripheral blood reflected the impaired hematopoiesis which was further validated by the reduced BM cellularity along with the deviated BM cell morphology as observed by scanning electron microscopy post arsenic exposure. The stromal cells were unable to establish a healthy matrix and the sustainability of hematopoietic progenitors was drastically affected in arsenic-exposed mouse groups, as observed in in vitro explant culture. The inability of stromal cells to establish supportive matrix was also explained by the decreased adherent colony formation in treated animals. Furthermore, the flow cytometric characterization of CXCR4+ and Sca-1+ CD44+ receptor expressions confirmed the dysregulation in the hematopoietic microenvironment. Thus, considering the importance of microenvironment in the maintenance of HSPC, it can be concluded that arsenic toxicity causes microenvironmental damage, leading to niche derangement and impaired hematopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bourdonnay E, Morzadec C, Sparfel L, Galibert MD, Jouneau S, Martin-Chouly C, Fardel O, Vernhet L (2009) Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol 46(4):649–656

    Article  CAS  PubMed  Google Scholar 

  2. Bailey K, Xia Y, Ward WO, Knapp G, Mo J, Mumford JL, Owen RD, Thai SF (2009) Global gene expression profiling of hyperkeratotic skin lesions from inner Mongolians chronically exposed to arsenic. Toxicol Pathol 37(7):849–859

    Article  CAS  PubMed  Google Scholar 

  3. Andrew AS, Jewell DA, Mason RA, Whitfield ML, Moore JH, Karagas MR (2008) Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ Health Perspect 116(4):524–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV (2007) Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86(4):1179–1186

    Article  CAS  PubMed  Google Scholar 

  5. Gong Z, Lu X, Watt C, Wen B, He B, Mumford J, Ning Z, Xia Y, Le CX (2006) Speciation analysis of arsenic in groundwater from Inner Mongolia with an emphasis on acid-leachable particulate arsenic. Anal Chim Acta 555(1):181–187

    Article  CAS  Google Scholar 

  6. Ezeh PC, Lauer FT, MacKenzie D, McClain S, Liu KJ, Hudson LG, Gandolfi AJ, Burchiel SW (2014) Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses humoral immunity in vivo. PLoS One 9(4):e93920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol 31(6):575–588

    CAS  PubMed  Google Scholar 

  8. Vrotsos E, Martinez R, Pizzolato J, Martinez A, Sriganeshan V (2014) Arsenic exposure as a cause of persistent absolute eosinophilia. JMED Research. doi:10.5171/2014.230675

    Article  Google Scholar 

  9. Flora SJS (2014) Toxic metals: health effects, and therapeutic measures. Journal of Biomedical and Therapeutic Sciences 1(1):48–64

    Google Scholar 

  10. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang HS, Sthiannopkao S, Chen ZJ, Man YB, Du J, Xing GH, Kim KW, Mohamed Yasin MS, Hashim JH, Wong MH (2013) Arsenic concentration in rice, fish, meat and vegetables in Cambodia: a preliminary risk assessment. Environ Geochem Health 35(6):745–755

    Article  CAS  PubMed  Google Scholar 

  12. Saha KC (1984) Melanokeratosis from arsenic contaminated tubewell water. Indian J Dermatol 29(4):37–46

    CAS  PubMed  Google Scholar 

  13. Rebuzzini P, Cebral E, Fassina L, Alberto Redi C, Zuccotti M, Garagna S (2015) Arsenic trioxide alters the differentiation of mouse embryonic stem cell into cardiomyocytes. Sci Rep. doi:10.1038/srep14993

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moon K, Guallar E, Navas-Acien A (2012) Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep 14(6):542–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mehta A, Kannan GM, Dube SN, Pant BP, Pant SC, Flora SJ (2002) Haematological, hepatic and renal alterations after repeated oral or intraperitoneal administration of monoisoamyl DMSA. I. Changes in male rats. J Appl Toxicol 22(6):359–369

    Article  CAS  PubMed  Google Scholar 

  16. Yu M, Xue J, Li Y, Zhang W, Ma D, Liu L, Zang Z (2013) Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Arch Toxicol 87:1025–1035

    Article  CAS  PubMed  Google Scholar 

  17. Calderón J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, Borja-Aburto V, Díaz-Barriga F (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85(2):69–76

    Article  PubMed  CAS  Google Scholar 

  18. Tsai SY, Chou HY, The HW, Chen CM, Chen CJ (2003) The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 24(4–5):747–753

    Article  CAS  PubMed  Google Scholar 

  19. Liu S, Guo X, Wu B, Yu H, Zhang X, Li M (2014) Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep. doi:10.1038/srep06894

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79(933):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gu QL, Li NL, Zhu ZG, Yin HR, Lin YZ (2000) A study on arsenic trioxide inducing in vitro apoptosis of gastric cancer cell lines. World J Gastroenterol 6(3):435–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yadav S, Shi Y, Wang F, Wang H (2010) Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway. Toxicol Appl Pharmacol 244(3):263–272

    Article  CAS  PubMed  Google Scholar 

  23. Rudge CV, Rollin HB, Nogueira CM, Thomassen Y, Rudge MC, Odland JØ (2009) The placenta as a barrier for toxic and essential elements in paired maternal and cord blood samples of South African delivering women. J Environ Monit 11(7):1322–1330

    Article  CAS  PubMed  Google Scholar 

  24. Waalkes MP, Liu J, Germolec DR, Trempus CS, Cannon RE, Tokar EJ, Tennant RW, Ward JM, Diwan BA (2008) Arsenic exposure in utero exacerbates skin cancer response in adulthood with contemporaneous distortion of tumor stem cell dynamics. Cancer Res 68(20):8278–8285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Islam T, Parvin S, Pervin M, Bari ASM, Khan MAHNA (2011) Effects of chronic arsenic toxicity on the haematology and histoarchitecture of female reproductive system of black Bengal black goat. Bangl J Vet Med 9(1):59–66

    Article  Google Scholar 

  26. Dangleben NL, Skibola CF, Smith MT (2013) Arsenic immunotoxicity: a review. Environ Health. doi:10.1186/1476-069X-12-73

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patterson R, Vega L, Trouba K, Bortner C, Germolec D (2004) Arsenic induced alterations in the contact hypersensitivity response in BALB/c mice. Toxicol Appl Pharmacol 198(3):434–443

    Article  CAS  PubMed  Google Scholar 

  28. Lemarie A, Morzadec C, Bourdonnay E, Fardel O, Vernhet L (2006) Human macrophages constitute targets for immunotoxic inorganic arsenic. J Immunol 177(5):3019–3027

    Article  CAS  PubMed  Google Scholar 

  29. Bishayi B, Sengupta M (2003) Intracellular survival of Staphylococcus aureus due to alteration of cellular activity in arsenic and lead intoxicated mature Swiss albino mice. Toxicology 184(1):31–39

    Article  CAS  PubMed  Google Scholar 

  30. Harrison MT, McCoy KL (2001) Immunosuppression by arsenic: a comparison of cathepsin L inhibition and apoptosis. Int Immunopharmacol 1(4):647–656

    Article  CAS  PubMed  Google Scholar 

  31. Biswas D, Banerjee M, Sen G, Das JK, Banerjee A, Sau TJ, Pandit S, Giri AK, Biswas T (2008) Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. Toxicol Appl Pharmacol 230(1):57–66

    Article  CAS  PubMed  Google Scholar 

  32. Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639

    Article  CAS  PubMed  Google Scholar 

  33. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baldridge MT, King KY, Goodell MA (2011) Inflammatory signals regulate hematopoietic stem cells. Trends Immunol 32(2):57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pereira JA, Das P, Chaklader M, Chatterjee S, Basak P, Chaudhuri S, Law S (2010) Effects of inorganic arsenic on bone marrow hematopoietic cells: an emphasis on apoptosis and Sca-1/c-Kit positive population. J Stem Cells 5(3):117–127

    PubMed  Google Scholar 

  36. Lew YS, Brown SL, Griffin RJ, Song CW, Kim JH (1999) Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Res 59(24):6033–6037

    CAS  PubMed  Google Scholar 

  37. Srivastava R, Bhattacharya S, Chakraborty A, Chattopadhyay A (2015) Differential in vivo genotoxicity of arsenic trioxide in glutathione depleted mouse bone marrow cells: expressions of Nrf2/Keap1/P62. Toxicol Mech Methods 25(3):223–228

    Article  CAS  PubMed  Google Scholar 

  38. Vahidnia A, van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26(10):823–832

    Article  CAS  PubMed  Google Scholar 

  39. Valorani MG, Germani A, Otto WR, Harper L, Biddle A, Khoo CP, Lin WR, Hawa MI, Tropel P, Patrizi MP, Pozzilli P, Alison MR (2010) Hypoxia increases Sca-1/CD44 co-expression in murine mesenchymal stem cells and enhances their adipogenic differentiation potential. Cell Tissue Res 341(1):111–120

    Article  CAS  PubMed  Google Scholar 

  40. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Immunity, maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director of Calcutta School of Tropical Medicine for successful completion of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Law.

Ethics declarations

The study was approved by the institutional animal ethical committee.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, J.A., Law, S. Microenvironmental Scenario of the Bone Marrow of Inorganic Arsenic-Exposed Experimental Mice. Biol Trace Elem Res 181, 304–313 (2018). https://doi.org/10.1007/s12011-017-1022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1022-2

Keywords

Navigation