Skip to main content

Advertisement

Log in

Exposure of Arsenic Associated with Cellular Turnover and Apoptosis Profile in the Bone Marrow of Mice Including Stem/Progenitor Population

  • RESEARCH ARTICLE
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Arsenic toxicity is a current global concern due to its devastating toxic effects on human health. Over several millions of people are exposed to this element on daily basis, mainly through drinking water and agricultural pesticides, especially along the Indo-Bangladesh border. Numerous studies have often reflected on arsenic’s deleterious effects on different organs and tissues, including the hematopoietic system. Healthy hematopoiesis is crucial for the homeostasis of functional mature blood cells which are constantly maintained by the bone marrow stem/progenitor cell (HSPC) population. The present study is aimed to understand the hematopoietic cellular status and turnover with special focus on apoptosis and associated alterations in HSPCs in the event of arsenic trioxide exposure in experimental swiss albino mice. The study involves exposure of Swiss albino mice to 10 μg arsenic trioxide/gram of body weight through oral gavage and 5 μg of arsenic trioxide/gram body weight through intraperitoneal injections for a duration of 30 days. The dysregulation in the hematopoietic system was characterized by bone marrow cytochemical analysis, in vitro cellular kinetics study, flow cytometry analysis of hematopoietic populations and component distribution and finally by the apoptosis profile. Upon examination, reduced body weight and reduction in myelopeoxidase (MPO) in the bone marrow cells of arsenic exposed mice were noticed. The diminution in the cell viability supported by apoptosis profile hinted towards hindered hematopoiesis. The in vitro cell culture depicted the catastrophic condition in the hematopoietic compartment of arsenic exposed mice. The flowcytometric analysis revealed the changes in granular population and depletion in CD150+ and Tie2+ HSPCs which confirms deregulation in the bone marrow hematopoietic compartment of the arsenic trioxide exposed mice groups. The study presented an overall as well as hematopoiesis specific scenario of arsenic toxicity that would be beneficial for the development of more awareness regarding this common and prevalent hazardous exposure which severely damages the HSPC population, leading to apoptosis and perturbed mature cellular turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abarrategi, A., S.A. Mian, D. Passaro, K. Rouault-Pierre, W. Grey, and D. Bonnet. 2018. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. Journal of Experimental Medicine 215 (3): 729–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, V.M., M.L. Mateus, M.C. Batoréu, M. Aschner, and A.M. Dos Santos. 2015. Lead, arsenic, and manganese metal mixture exposures: Focus on biomarkers of effect. Biological Trace Element Research 166 (1): 13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai, F., A. Hirao, M. Ohmura, H. Sato, S. Matsuoka, K. Takubo, K. Ito, G.Y. Koh, and T. Suda. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118 (2): 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Arco-Lázaro, E., T. Pardo, R. Clemente, and M.P. Bernal. 2018. Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers. Journal of Environmental Management 209: 262–272.

    Article  PubMed  Google Scholar 

  • Attreed, S.E., A. Navas-Acien, and C.D. Heaney. 2017. Arsenic and immune response to infection during pregnancy and early life. Current Environmental Health Reports 4 (2): 229–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain, L.J., J.T. Liu, and R.E. League. 2016. Arsenic inhibits stem cell differentiation by altering the interplay between the Wnt3a and Notch signaling pathways. Toxicology Reports 3: 405–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee, M., P. Bhattacharjee, and A.K. Giri. 2011. Arsenic-induced cancers: A review with special reference to gene, environment and their interaction. Genes and Environment 33 (4): 128–140.

    Article  CAS  Google Scholar 

  • Basak, P., S. Chatterjee, M. Das, P. Das, J. Archana Pereira, R. Kumar Dutta, M. Chaklader, S. Chaudhuri, and S. Law. 2010. Phenotypic alteration of bone marrow HSC and microenvironmental association in experimentally induced leukemia. Current Stem Cell Research & Therapy 5 (4): 379–386.

    Article  CAS  Google Scholar 

  • Bencko, V., and F.Y.L. Foong. 2017. The history of arsenical pesticides and health risks related to the use of Agent Blue. Annals of Agricultural and Environmental Medicine 24 (2): 312–316.

    Article  CAS  PubMed  Google Scholar 

  • Beyfuss, K., and D.A. Hood. 2018. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Report, 1–18.

  • Buchet, J.P., R. Lauwerys, and H. Roels. 1981a. Comparison of the urinary excretion of arsenic metabolites after a single dose of sodium arsenite, monomethylarsonate or dimethylarsinate in man. International Archives of Occupational and Environmental Health 48: 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Buchet, J.P., R. Lauwerys, and H. Roels. 1981b. Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers. International Archives of Occupational and Environmental Health 48: 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Carsetti, R. 2000. The development of B cells in the bone marrow is controlled by the balance between cell-autonomous mechanisms and signals from the microenvironment. Journal of Experimental Medicine 191 (1): 5–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaklader, M., P. Das, J.A. Pereira, S. Chaudhuri, and S. Law. 2012. Altered canonical hedgehog-glisignalling axis in pesticide-induced bone marrow aplasia mouse model. Archives of Industrial Hygiene and Toxicology 63 (3): 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, R., S. Chattopadhyay, and S. Law. 2016. Deregulation of vital mitotic kinase–phosphatase signaling in hematopoietic stem/progenitor compartment leads to cellular catastrophe in experimental aplastic anemia. Molecular and Cellular Biochemistry 422 (1–2): 121–134.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, R., and S. Law. 2017. Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia. European journal of cell biology.

  • Chatterjee, S., R.K. Dutta, P. Basak, P. Das, M. Das, J.A. Pereira, M. Chaklader, S. Chaudhuri, and S. Law. 2010. Alteration in marrow stromal microenvironment and apoptosis mechanisms involved in aplastic anemia: an animal model to study the possible disease pathology. Stem Cells International2010.

  • Chen, Y., K. Liu, Y. Shi, and C. Shao. 2018. The tango of ROS and p53 in tissue stem cells.

  • Chung, J.Y., S.D. Yu, and Y.S. Hong. 2014. Environmental source of arsenic exposure. Journal of Preventive Medicine and Public Health 47 (5): 253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cullen, W.R., and K.J. Reimer. 1989. Arsenic speciation in the environment. Chemical Reviews 89 (4): 713–764. https://doi.org/10.1021/cr00094a002.

    Article  CAS  Google Scholar 

  • Dahlawi, S., A. Naeem, M. Iqbal, M.A. Farooq, S. Bibi, and Z. Rengel. 2018. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. Chemosphere 194: 171–188.

    Article  PubMed  Google Scholar 

  • Dangleben, N.L., C.F. Skibola, and M.T. Smith. 2013. Arsenic immunotoxicity: A review. Environmental Health 12 (1): 73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, D., K.S. Lim, and C.G. Eberhart. 2014. Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Actaneuropathologica Communications 2 (1): 31.

    Article  Google Scholar 

  • Duan, G.L., Y. Hu, S. Schneider, J. McDermott, J. Chen, N. Sauer, B.P. Rosen, B. Daus, Z. Liu, and Y.G. Zhu. 2016. Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nature Plants 2 (1): 15202.

    Article  CAS  PubMed  Google Scholar 

  • EHC, 2001. 224, arsenic and arsenic compounds. Environmetal Health Criteria. Geneva: World Health Organization, 169

  • Ezeh, P.C., F.T. Lauer, D. MacKenzie, S. McClain, K.J. Liu, L.G. Hudson, A.J. Gandolfi, and S.W. Burchiel. 2014. Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses humoral immunity in vivo. PLoS ONE 9 (4): e93920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fei, D.L., D.C. Koestler, Z. Li, C. Giambelli, A. Sanchez-Mejias, J.A. Gosse, C.J. Marsit, M.R. Karagas, and D.J. Robbins. 2013. Association between In Utero arsenic exposure, placental gene expression, and infant birth weight: A US birth cohort study. Environmental Health 12 (1): 58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson, J.F., and J. Gavis. 1972. A review of the arsenic cycle in natural waters. Water Research 6 (11): 1259–1274. https://doi.org/10.1016/0043-1354(72)90052-8.

    Article  CAS  Google Scholar 

  • Flora, S.J.S. 2014. Handbook of arsenic toxicology. Academic Press.

    Google Scholar 

  • Gera, R., V. Singh, S. Mitra, A.K. Sharma, A. Singh, A. Dasgupta, D. Singh, M. Kumar, P. Jagdale, S. Patnaik, and D. Ghosh. 2017. Arsenic exposure impels CD4 commitment in thymus and suppress T cell cytokine secretion by increasing regulatory T cells. Scientific Reports 7 (1): 7140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodjat, M., M.A. Rezvanfar, and M. Abdollahi. 2015. A systematic review on the role of environmental toxicants in stem cells aging. Food and Chemical Toxicology 86: 298–308.

    Article  CAS  PubMed  Google Scholar 

  • Jomova, K., Z. Jenisova, M. Feszterova, S. Baros, J. Liska, D. Hudecova, C.J. Rhodes, and M. Valko. 2011. Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology 31 (2): 95–107.

    Article  CAS  PubMed  Google Scholar 

  • Khairul, I., Q.Q. Wang, Y.H. Jiang, C. Wang, and H. Naranmandura. 2017. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8 (14): 23905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, F., S. Momtaz, K. Niaz, F.I. Hassan, and M. Abdollahi. 2017. Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food and Chemical Toxicology 107: 406–417.

    Article  CAS  PubMed  Google Scholar 

  • Lew, Y.S., S.L. Brown, R.J. Griffin, C.W. Song, and J.H. Kim. 1999. Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Research 59 (24): 6033–6037.

    CAS  PubMed  Google Scholar 

  • Li, Y., F. Ye, A. Wang, D. Wang, B. Yang, Q. Zheng, G. Sun, and X. Gao. 2016. Chronic arsenic poisoning probably caused by arsenic-based pesticides: Findings from an investigation study of a household. International Journal of Environmental Research and Public Health 13 (1): 133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., A.F. Wilson, W. Du, and Q. Pang. 2018. Cell-cycle-specific function of p53 in Fanconi anemia hematopoietic stem and progenitor cell proliferation. Stem Cell Reports.

  • Liang, C.P., S.W. Wang, Y.H. Kao, and J.S. Chen. 2016. Health risk assessment of groundwater arsenic pollution in southern Taiwan. Environmental Geochemistry and Health 38 (6): 1271–1281.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, P. 2017. An insight of environmental contamination of arsenic on animal health. Emerging Contaminants 3 (1): 17–22.

    Article  Google Scholar 

  • Mann, S., P.O. Droz, and M. Vahter. 1996a. A physiologically based pharmacokinetic model for arsenic exposure: I. Development in hamster and rabbits. Toxicology and Applied Pharmacology 137: 8–22.

    Article  CAS  PubMed  Google Scholar 

  • Mann, S., P.O. Droz, and M. Vahter. 1996b. A physiologically based pharmacokinetic model for arsenic exposure: II. Validation and application in humans. Toxicology and Applied Pharmacology 140: 471–486.

    Article  CAS  PubMed  Google Scholar 

  • Mazumder, D.G. 2017. Health Impact of Bacteriological and Chemical Contamination of Drinking Water with Special Reference to Arsenic. In Water and Sanitation in the New Millennium, 197–206. New Delhi: Springer.

    Chapter  Google Scholar 

  • Mendez, W.M., Jr., S. Eftim, J. Cohen, I. Warren, J. Cowden, J.S. Lee, and R. Sams. 2017. Relationships between arsenic concentrations in drinking water and lung and bladder cancer incidence in US counties. Journal of Exposure Science and Environmental Epidemiology 27 (3): 235.

    Article  CAS  PubMed  Google Scholar 

  • Patlolla, A.K., and P.B. Tchounwou. 2005. Cytogenetic evaluation of arsenic trioxide toxicity in Sprague-Dawley rats. Mutation Research/genetic Toxicology and Environmental Mutagenesis 587 (1): 126–133.

    Article  CAS  Google Scholar 

  • Pereira, J.A., and S. Law. 2018. Microenvironmental scenario of the bone marrow of inorganic arsenic-Exposed experimental mice. Biological Trace Element Research 181 (2): 304–313.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, J.A., P. Das, M. Chaklader, S. Chatterjee, P. Basak, S. Chaudhuri, and S. Law. 2010. Effects of inorganic arsenic on bone marrow hematopoietic cells: An emphasis on apoptosis and Sca-1/c-Kit positive population. Journal of Stem Cells 5 (3): 117–127.

    PubMed  Google Scholar 

  • Pinto, B.I., O.R. Lujan, S.A. Ramos, C.R. Propper, and R.S. Kellar. 2018. Estrogen mitigates the negative effects of arsenic contamination in an in vitro wound model. Applied in Vitro Toxicology 4 (1): 24–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash, C., M. Soni, and V. Kumar. 2016. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. Journal of Applied Toxicology 36 (2): 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Fraticelli, A.E., S.L. Wolock, C.S. Weinreb, R. Panero, S.H. Patel, M. Jankovic, J. Sun, R.A. Calogero, A.M. Klein, and F.D. Camargo. 2018. Clonal analysis of lineage fate in native haematopoiesis. Nature.

  • Rudge, C.V., H.B. Röllin, C.M. Nogueira, Y. Thomassen, M.C. Rudge, and J.Ø. Odland. 2009. The placenta as a barrier for toxic and essential elements in paired maternal and cord blood samples of South African delivering women. Journal of Environmental Monitoring 11 (7): 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  • Saha, K. 1984. Melanokeratosis from arsenic contaminated tubewell water. Indian Journal of Dermatology 29 (4): 37–46.

    CAS  PubMed  Google Scholar 

  • Sawai, C.M., S. Babovic, S. Upadhaya, D.J. Knapp, Y. Lavin, C.M. Lau, A. Goloborodko, J. Feng, J. Fujisaki, L. Ding, and L.A. Mirny. 2016. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45 (3): 597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seita, J., and I.L. Weissman. 2010. Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2 (6): 640–653.

    CAS  PubMed  Google Scholar 

  • Shankar, S., U. Shanker, and Shikha. 2014. Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. TheScientificWorldJOURNAL 2014: 304524. https://doi.org/10.1155/2014/304524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, M.B., L.S. Limaye, and V.P. Kale. 2011. Mimicking the functional hematopoietic stem cell niche in vitro: recapitulation of marrow physiology by hydrogel-based three-dimensional cultures of mesenchymal stromal cells. Haematologica, pp.haematol-2011.

  • Singer, M., and P.J. Sansonetti. 2004. IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. The Journal of Immunology 173 (6): 4197–4206.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A.P., R.K. Goel, and T. Kaur. 2011. Mechanisms pertaining to arsenic toxicity. Toxicology International 18 (2): 87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, A.H., E.O. Lingas, and M. Rahman. 2000. Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization 78 (9): 1093–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava, R., S. Bhattacharya, A. Chakraborty, and A. Chattopadhyay. 2015. Differential in vivo genotoxicity of arsenic trioxide in glutathione depleted mouse bone marrow cells: Expressions of Nrf2/Keap1/P62. Toxicology Mechanisms and Methods 25 (3): 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, V., B. Goodale, A. Raab, T. Schwerdtle, K. Reimer, S. Conklin, M.R. Karagas, and K.A. Francesconi. 2017. Human exposure to organic arsenic species from seafood. Science of the Total Environment 580: 266–282.

    Article  CAS  PubMed  Google Scholar 

  • Tolins, M., M. Ruchirawat, and P. Landrigan. 2014. The developmental neurotoxicity of arsenic: Cognitive and behavioral consequences of early life exposure. Annals of Global Health 80 (4): 303–314.

    Article  PubMed  Google Scholar 

  • Travlos, G.S. 2006. Normal structure, function, and histology of the bone marrow. Toxicologic Pathology 34 (5): 548–565.

    Article  PubMed  Google Scholar 

  • Tsuchiya, K. 1977. Various effects of arsenic in Japan depending on type of exposure. Environmental Health Perspectives 19: 35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhaya, S., B. Reizis, and C.M. Sawai. 2018. New genetic tools for the in vivo study of hematopoietic stem cell function. Experimental Hematology 61: 26–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y.V., M. Leblanc, N. Fox, J.H. Mao, K.L. Tinkum, K. Krummel, D. Engle, D. Piwnica-Worms, H. Piwnica-Worms, A. Balmain, and K. Kaushansky. 2011. Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes & Development 25 (13): 1426–1438.

    Article  CAS  Google Scholar 

  • Wei, Q., and P.S. Frenette. 2018. Niches for hematopoietic stem cells and their progeny. Immunity 48 (4): 632–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch, A.H., M.S. Lico, and J.L. Hughes. 1988. Arsenic in ground water of the Western United States. Ground Water 26 (3): 333–347. https://doi.org/10.1111/j.1745-6584.1988.tb00397.x.

    Article  CAS  Google Scholar 

  • Welch, A.H., D.B. Westjohn, D.R. Helsel, and R.B. Wanty. 2000. Arsenic in ground water of the United States: Occurrence and geochemistry. Ground Water 38 (4): 589–604. https://doi.org/10.1111/j.1745-6584.2000.tb00251.x.

    Article  CAS  Google Scholar 

  • Yu, V.W.C., and D.T. Scadden. 2016. Hematopoietic stem cell and its bone marrow niche. In Current topics in developmental biology, vol. 118, 21–44. Academic Press.

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director of Calcutta School of Tropical Medicine and Chancellor, Brainware University for successful completion of the study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Law.

Ethics declarations

Conflict of interest

All authors declared no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, J.A., Chattopadhyay, S. & Law, S. Exposure of Arsenic Associated with Cellular Turnover and Apoptosis Profile in the Bone Marrow of Mice Including Stem/Progenitor Population. Proc Zool Soc 77, 89–104 (2024). https://doi.org/10.1007/s12595-023-00511-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-023-00511-3

Keywords

Navigation