Skip to main content
Log in

Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo(a)pyrene-induced lung cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The present study was aimed to delineate in vivo mechanisms of orally administered fisetin with special reference to mitochondrial dysfunction in lung tissues employing benzo(a)pyrene (B(a)P) as the model lung carcinogen. The recent revival of interest in the study of mitochondria has been stimulated by the evidence that genetic and/or metabolic alterations in this organelle lead to a variety of human diseases including cancer. These alterations could be either causative or contributing factors. Hence, the activities of mitochondrial-specific enzymes of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and tumor marker, carcinogenic embryonic antigen were analyzed in control and experimental groups of mice. The induction of apoptotic and anti-apoptotic proteins such as Bcl-2/Bax, cytochrome c, caspase-9 and caspase-3 was confirmed by the immunohistochemistry and Western blot analyses. Furthermore, transmission electron microscopy study of lung sections of B(a)P-induced mice showed the presence of phaemorphic cells with dense granules and increased mitochondria. All the aberrations were alleviated when the mice were treated with fisetin (25 mg/kg body weight). The results proved fisetin to be a very successful drug in combating the mitochondrial dysfunction in an experimental model of lung carcinogenesis induced by B(a)P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Proctor RN (2001) Tobacco and the global lung cancer epidemic. Nat Rev Cancer 1:82–86

    Article  PubMed  CAS  Google Scholar 

  2. Nandakumar A, Gupta PC, Gangadharan P, Visweswara RN, Parkin DM (2005) Geographic pathology revisited: development of an atlas of cancer in India. Int J Cancer 116:740–754

    Article  PubMed  CAS  Google Scholar 

  3. Ames BN, Gold LS (1998) The causes and prevention of cancer: the role of environment. Biotherapy 11:205–220

    Article  PubMed  CAS  Google Scholar 

  4. Hecht SS, Upadhyaya P, Wang M, Bliss RL, McIntee EJ, Kenney PM (2002) Inhibition of lung tumorigenesis in A/J mice by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-l-cysteine and myo-inositol, individually and in combination. Carcinogenesis 23:1455–1461

    Article  PubMed  CAS  Google Scholar 

  5. Rojas M, Alexandrov K, Cascorbi I, Brockmöller J, Likhachev A, Pozharisski K, Bouvier G, Auburtin G, Mayer L, Kopp-Schneider A, Roots I, Bartsch H (1998) High benzo[a]pyrene diol-epoxide DNA adduct levels in lung and blood cells from individuals with combined CYP1A1 MspI/Msp-GSTM1*0/*0 genotypes. Pharmacogenetics 8:109–118

    Article  PubMed  CAS  Google Scholar 

  6. Hussain SP, Amstad P, Raja K, Sawyer M, Hofseth L, Shields PG, Hewer A, Phillips DH, Ryberg D, Haugen A, Harris CC (2001) Mutability of p53 hotspot codons to benzo(a)pyrene diol epoxide (BPDE) and the frequency of p53 mutations in nontumorous human lung. Cancer Res 61:6350–6355

    PubMed  CAS  Google Scholar 

  7. Xiong P, Bondy ML, Li D, Shen H, Wang LE, Singletary SE, Spitz MR, Wei Q (2001) Sensitivity to benzo(a)pyrene diol-epoxide associated with risk of breast cancer in young women and modulation by glutathione S-transferase polymorphisms: a case-control study. Cancer Res 61:8465–8469

    PubMed  CAS  Google Scholar 

  8. Alexandrov K, Cascorbi I, Rojas M, Bouvier G, Kriek E, Bartsch H (2002) CYP1A1 and GSTM1 genotypes affect benzo[a]pyrene DNA adducts in smokers’ lung: comparison with aromatic/hydrophobic adduct formation. Carcinogenesis 23:1969–1977

    Article  PubMed  CAS  Google Scholar 

  9. Liang Z, Lippman SM, Kawabe A, Shimada Y, Xu XC (2003) Identification of benzo(a)pyrene diol epoxide-binding DNA fragments using DNA immunoprecipitation technique. Cancer Res 63:1470–1474

    PubMed  CAS  Google Scholar 

  10. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  11. Peluso G, Nicolai R, Reda E, Benatti P, Barbarisi A, Calvani M (2000) Cancer and anticancer therapy-induced modifications on metabolism mediated by carnitine system. J Cell Physiol 182:339–350

    Article  PubMed  CAS  Google Scholar 

  12. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    PubMed  CAS  Google Scholar 

  13. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC (1993) Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53:4701–4714

    PubMed  CAS  Google Scholar 

  14. Korsmeyer SJ (1992) Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80:879–886

    PubMed  CAS  Google Scholar 

  15. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    Article  PubMed  CAS  Google Scholar 

  16. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278:1966–1968

    Article  PubMed  CAS  Google Scholar 

  17. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    Article  PubMed  CAS  Google Scholar 

  18. Newman DJ, Cragg GM, Holbeck S, Sausville EA (2002) Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr Cancer Drug Targets 2:279–308

    Article  PubMed  CAS  Google Scholar 

  19. Ashokkumar P, Sudhandiran G (2011) Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/β-catenin pathway. Invest New Drugs 29:273–284

    Article  PubMed  CAS  Google Scholar 

  20. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130:2243–2250

    PubMed  CAS  Google Scholar 

  21. Higa S, Hirano T, Kotani M, Matsumoto M, Fujita A, Suemura M, Kawase I, Tanaka T (2003) Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils. J Allergy Clin Immunol 111:1299–1306

    Article  PubMed  CAS  Google Scholar 

  22. Hanneken A, Lin FF, Johnson J, Maher P (2006) Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci 47:3164–3177

    Article  PubMed  Google Scholar 

  23. Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol Pharmacol 71:1703–1714

    Article  PubMed  CAS  Google Scholar 

  24. Ravichandran N, Suresh G, Ramesh B, Siva GV (2011) Fisetin, a novel flavonol attenuates benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Food Chem Toxicol 49:1141–1147

    Article  PubMed  CAS  Google Scholar 

  25. Macnab GM, Urbanowicz JM, Kew MC (1978) Carcinoembryonic antigen in hepatocellular cancer. Br J Cancer 38:51–54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Johnson D, Lardy H (1967) Isolation of liver or kidney mitochondria. Methods Enzymol 10:94–96

    Article  CAS  Google Scholar 

  27. Reed LJ, Mukherjee BB (1969) α-Ketoglutarate dehydrogenase complex from Escherichia coli. Methods Enzymol 13:55–61

    Article  CAS  Google Scholar 

  28. Slater EC, Borner WD (1952) The effect of fluoride on the succinic oxidase system. Biochem J 52:185–196

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Mehler AH, Kornberg A, Grisolia S, Ochoa S (1948) The enzymatic mechanism of oxidation-reductions between malate or isocitrate and pyruvate. J Biol Chem 174:961–977

    PubMed  CAS  Google Scholar 

  30. Birch-Machin MA, Briggs HL, Saborido AA, Bindoff LA, Turnbull DM (1994) An evaluation of the measurement of the activities of complexes I-IV in the respiratory chain of human skeletal muscle mitochondria. Biochem Med Metab Biol 51:35–42

    Article  PubMed  CAS  Google Scholar 

  31. Wiethege T, Voss B, Muller KM (1995) P53 accumulation and proliferating-cell nuclear antigen expression in human lung cancer. J Cancer Res Clin Oncol 121:371–377

    Article  PubMed  CAS  Google Scholar 

  32. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  33. An Y, Kato K, Nakano M, Otsu H, Okada S, Yamanaka K (2005) Specific induction of oxidative stress in terminal bronchiolar Clara cells during dimethylarsenic-induced lung tumor promoting process in mice. Cancer Lett 230:57–64

    Article  PubMed  CAS  Google Scholar 

  34. Thirunavukkarasu C, Singh JP, Selvendiran K, Sakthisekaran D (2001) Chemopreventive efficacy of selenium against N-nitrosodiethylamine-induced hepatoma in albino rats. Cell Biochem Funct 19:265–271

    Article  PubMed  CAS  Google Scholar 

  35. Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274

    PubMed  CAS  Google Scholar 

  36. Veronesi G, Pelosi G, Sonzogni A, Leon ME, D’Aiuto M, Gasparri R, De Braud F, De Pas T, Sandri M, Spaggiari L (2005) Tumour CEA as predictor of better outcome in squamous cell carcinoma of the lung. Lung Cancer 48:233–240

    Article  PubMed  Google Scholar 

  37. Lin WC, Tseng YT, Chang YL, Lee YC (2007) Pulmonary tumour with high carcinoembryonic antigen titre caused by chronic propolis aspiration. Eur Respir J 30:1227–1230

    Article  PubMed  Google Scholar 

  38. Sawabata N, Ohta M, Takeda S, Hirano H, Okumura Y, Asada H, Maeda H (2002) Serum carcinoembryonic antigen level in surgically resected clinical stage I patients with non-small cell lung cancer. Ann Thorac Surg 74:174–179

    Article  PubMed  Google Scholar 

  39. Sawabata N, Hirano H, Inoue M, Okumura Y, Asada H, Takeda S, Maeda H (2003) Immunohistochemical analysis of resected clinical stage I pulmonary adenocarcinomas with high preoperative levels of serum carcinoembryonic antigen. Ann Thorac Surg 76:203–207

    Article  PubMed  Google Scholar 

  40. Ito T, Deng X, Carr B, May WS (1997) Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 272:11671–11673

    Article  PubMed  CAS  Google Scholar 

  41. Ruvolo PP, Deng X, May WS (2001) Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 15:515–522

    Article  PubMed  CAS  Google Scholar 

  42. Van Hoof C, Goris J (2003) Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochim Biophys Acta 1640:97–104

    Article  PubMed  CAS  Google Scholar 

  43. Reed JC, Jurgensmeier JM, Matsuyama S (1998) Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1366:127–137

    Article  PubMed  CAS  Google Scholar 

  44. Bossy-Wetzel E, Green DR (1999) Apoptosis: checkpoint at the mitochondrial frontier. Mutat Res 434:243–251

    Article  PubMed  CAS  Google Scholar 

  45. Herrera B, Alvarez AM, Sánchez A, Fernández M, Roncero C, Benito M, Fabregat I (2001) Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. FASEB J 15:741–751

    Article  PubMed  CAS  Google Scholar 

  46. Raha S, Robinson BH (2001) Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet 106:62–70

    Article  PubMed  CAS  Google Scholar 

  47. Pal HC, Sharma S, Elmets CA, Athar M, Afaq F (2013) Fisetin inhibits growth, induces G2/M arrest and apoptosis of human epidermoid carcinoma A431 cells: role of mitochondrial membrane potential disruption and consequent caspases activation. Exp Dermatol 22:470–475

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The first author N. Ravichandran gratefully acknowledges University Grants Commission (UGC), for Junior Research Fellowship, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Vijaiyan Siva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravichandran, N., Suresh, G., Ramesh, B. et al. Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo(a)pyrene-induced lung cancer. Mol Cell Biochem 390, 225–234 (2014). https://doi.org/10.1007/s11010-014-1973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-1973-y

Keywords

Navigation