Skip to main content
Log in

Regulation of cytokine expression in murine macrophages stimulated by excretory/secretory products from Trichinella spiralis in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Trichinella spiralis is a zoonotic nematode and food borne parasite and infection with T. spiralis leads to suppression of the host immune response and other immunopathologies. The excretory/secretory (ES) products of T. spiralis play important roles in the process of immunomodulation. However, the mechanisms and related molecules are unknown. Macrophages, a target for immunomodulation by the helminth parasite, play a critical role in initiating and modulating the host immune response to parasite infection. In this study, we examined the effect of ES products from different stages of T. spiralis on modulating J774A.1 macrophage activities. ES products from different stages of T. spiralis reduced the capacity of macrophages to express pro-inflammatory cytokines (tumor necrosis factor α, interleukin-1β , interleukin-6 , and interleukin-12) in response to lipopolysaccharide (LPS) challenge. However, only ES products from 3-day-old adult worms and 5-day-old adult worms/new-born larvae significantly inhibited inducible nitric oxide synthase gene expression in LPS-induced macrophages. In addition, ES products alone boosted the expression of anti-inflammatory cytokines interleukin-10 and transforming growth factor-β and effector molecule arginase 1 in J774A.1 macrophages. Signal transduction studies showed that ES products significantly inhibited nuclear factor-κB translocation into the nucleus and the phosphorylation of both extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase in LPS-stimulated J774A.1 macrophages. These results suggest that ES products regulate host immune response at the macrophage level through inhibition of pro-inflammatory cytokines production and induction of macrophage toward the alternative phenotype, which maybe important for worm survival and host health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gottstein B, Pozio E, Nockler K (2009) Epidemiology, diagnosis, treatment, and control of trichinellosis. Clin Microbiol Rev 22(1):127–145

    Article  PubMed  CAS  Google Scholar 

  2. Jasmer DP (1993) Trichinella spiralis infected skeletal muscle cells arrest in G2/M and cease muscle gene expression. J Cell Biol 121(4):785–793

    Article  PubMed  CAS  Google Scholar 

  3. Bruschi F (2002) The immune response to the parasitic nematode Trichinella and the ways to escape it. From experimental studies to implications for human infection. Curr Drug Targets Immune Endocr Metabol Disord 2(3):269–280

    Article  PubMed  CAS  Google Scholar 

  4. Saunders KA, Raine T, Cooke A, Lawrence CE (2007) Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 75(1):397–407

    Article  PubMed  CAS  Google Scholar 

  5. Motomura Y, Wang H, Deng Y, El-Sharkawy R, Verdu E, Khan W (2009) Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis. Clin Exp Immunol 155(1):88–95

    Article  PubMed  CAS  Google Scholar 

  6. Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, Sofronic-Milosavljevic L (2008) Trichinella spiralis: modulation of experimental autoimmune encephalomyelitis in DA rats. Exp Parasitol 118(4):641–647

    Article  PubMed  CAS  Google Scholar 

  7. Park HK, Cho MK, Choi SH, Kim YS, Yu HS (2010) Trichinella spiralis: infection reduces airway allergic inflammation in mice. Exp Parasitol 127(2):539–544

    Article  PubMed  Google Scholar 

  8. Nagano I, Wu Z, Takahashi Y (2009) Functional genes and proteins of Trichinella spp. Parasitol Res 104(2):197–207

    Article  PubMed  Google Scholar 

  9. Wing E, Krahenbuhl J, Remington J (1979) Studies of macrophage function during Trichinella spiralis infection in mice. Immunology 36(3):479

    PubMed  CAS  Google Scholar 

  10. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    PubMed  CAS  Google Scholar 

  11. Goerdt S, Orfanos CE (1999) Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10(2):137–142

    Article  PubMed  CAS  Google Scholar 

  12. Kreider T, Anthony RM, Urban JF Jr, Gause WC (2007) Alternatively activated macrophages in helminth infections. Curr Opin Immunol 19(4):448–453

    Article  PubMed  CAS  Google Scholar 

  13. Tominaga K, Saito S, Matsuura M, Nakano M (1999) Lipopolysaccharide tolerance in murine peritoneal macrophages induces downregulation of the lipopolysaccharide signal transduction pathway through mitogen-activated protein kinase and nuclear factor-κB cascades, but not lipopolysaccharide-incorporation steps. Biochim Biophys Acta 1450(2):130–144

    Article  PubMed  CAS  Google Scholar 

  14. Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298(5596):1241–1245

    Article  PubMed  CAS  Google Scholar 

  15. Lappas M, Permezel M, Georgiou HM, Rice GE (2002) Nuclear factor κB regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol Reprod 67(2):668–673

    Article  PubMed  CAS  Google Scholar 

  16. Hommes D, Peppelenbosch M, Van Deventer S (2003) Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52(1):144–151

    Article  PubMed  CAS  Google Scholar 

  17. Butcher BA, Kim L, Johnson PF, Denkers EY (2001) Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-κB. J Immunol 167(4):2193–2201

    PubMed  CAS  Google Scholar 

  18. Dirgahayu P, Fukumoto S, Miura K, Hirai K (2002) Excretory/secretory products from plerocercoids of Spirometra erinaceieuropaei suppress the TNF-α gene expression by reducing phosphorylation of ERK1/2 and p38 MAPK in macrophages. Int J Parasitol 32(9):1155–1162

    Article  PubMed  CAS  Google Scholar 

  19. Gerencer M, Marinculic A, Rapic D, Frankovic M, Valpotic I (1992) Immunosuppression of in vivo and in vitro lymphocyte responses in swine induced by Trichinella spiralis or excretory-secretory antigens of the parasite. Vet Parasitol 44(3–4):263–273

    Article  PubMed  CAS  Google Scholar 

  20. Bruschi F, Carulli G, Azzara A, Homan W, Minnucci S, Rizzuti-Gullaci A, Sbrana S, Angiolini C (2000) Inhibitory Effects of Human Neutrophil Functions by the 45-kD Glycoprotein Derived from the Parasitic Nematode Trichinella spiralis. Int Arch Allergy Immunol 122(1):58–65

    Article  PubMed  CAS  Google Scholar 

  21. Langelaar M, Aranzamendi C, Franssen F, Van der Giessen J, Rutten V, Van der L (2009) Suppression of dendritic cell maturation by Trichinella spiralis excretory/secretory products. Parasite Immunol 31(10):641–645

    Article  PubMed  CAS  Google Scholar 

  22. Ros-Moreno R, Vázquez-López C, Giménez-Pardo C, de Armas-Serra C, Rodríguez F (2000) A study of proteases throughout the life cycle of Trichinella spiralis. Folia Parasitol (Praha) 47(1):49–54

    CAS  Google Scholar 

  23. Bian K, Zhong M, Harari Y, Lai M, Weisbrodt N, Murad F (2005) Helminth regulation of host IL-4Ralpha/Stat6 signaling: mechanism underlying NOS-2 inhibition by Trichinella spiralis. Proc Natl Acad Sci USA 102(11):3936–3941

    Article  PubMed  CAS  Google Scholar 

  24. Kenneth J, Thomas D (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408

    Article  Google Scholar 

  25. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87(1):13–20

    Article  PubMed  CAS  Google Scholar 

  26. Hewitson JP, Grainger JR, Maizels RM (2009) Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol 167(1):1–11

    Article  PubMed  CAS  Google Scholar 

  27. Goodridge HS, Wilson EH, Harnett W, Campbell CC, Harnett MM, Liew FY (2001) Modulation of macrophage cytokine production by ES-62, a secreted product of the filarial nematode Acanthocheilonema viteae. J Immunol 167(2):940–945

    PubMed  CAS  Google Scholar 

  28. Noël W, Raes G, Hassanzadeh Ghassabeh G, De Baetselier P, Beschin A (2004) Alternatively activated macrophages during parasite infections. Trends parasitol 20(3):126–133

    Article  PubMed  Google Scholar 

  29. Lawrence CE, Paterson JC, Wei XQ, Liew FY, Garside P, Kennedy MW (2000) Nitric oxide mediates intestinal pathology but not immune expulsion during Trichinella spiralis infection in mice. J Immunol 164(8):4229–4243

    PubMed  CAS  Google Scholar 

  30. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78(6):915–918

    Article  PubMed  CAS  Google Scholar 

  31. Bian K, Harari Y, Zhong M, Lai M, Castro G, Weisbrodt N, Murad F (2001) Down-regulation of inducible nitric-oxide synthase (NOS-2) during parasite-induced gut inflammation: a path to identify a selective NOS-2 inhibitor. Mol Pharmacol 59(4):939–947

    PubMed  CAS  Google Scholar 

  32. Terrazas LI, Walsh KL, Piskorska D, McGuire E, Harn DA Jr (2001) The schistosome oligosaccharide lacto-N-neotetraose expands Gr1 + cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4 + cells: a potential mechanism for immune polarization in helminth infections. J Immunol 167(9):5294–5303

    PubMed  CAS  Google Scholar 

  33. Stephen J (2010) Similarity and diversity in macrophage activation by nematodes, trematodes, and cestodes. J Biomed Biotechnol. doi:10.1155/2010/262609

  34. de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H, De Vries J (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174(4):915–924

    Article  PubMed  Google Scholar 

  35. Beiting DP, Bliss SK, Schlafer DH, Roberts VL, Appleton JA (2004) Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis. Infect Immun 72(6):3129–3137

    Article  PubMed  CAS  Google Scholar 

  36. Beiting DP, Gagliardo LF, Hesse M, Bliss SK, Meskill D, Appleton JA (2007) Coordinated control of immunity to muscle stage Trichinella spiralis by IL-10, regulatory T cells, and TGF-β. J Immunol 178(2):1039–1047

    PubMed  CAS  Google Scholar 

  37. Zhiliang W, Lj SM, Isao N, Yuzo T (2008) Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair. Parasit Vectors 1(1):27. doi:10.1186/1756-3305-1-27

    Article  Google Scholar 

  38. Reyes J, Terrazas L (2007) The divergent roles of alternatively activated macrophages in helminthic infections. Parasite Immunol 29(12):609–619

    Article  PubMed  CAS  Google Scholar 

  39. P’ng Loke ASMD, Robb A, Maizels RM, Allen JE (2000) Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur J Immunol 30:2669–2678

    Article  Google Scholar 

  40. Donnelly S, O’Neill SM, Sekiya M, Mulcahy G, Dalton JP (2005) Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infect Immun 73(1):166–173

    Article  PubMed  CAS  Google Scholar 

  41. Chang NCA, Hung SI, Hwa KY, Kato I, Chen JE, Liu CH, Chang AC (2001) A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem 276(20):17497–17506

    Article  PubMed  CAS  Google Scholar 

  42. Dzik J, Go os B, Jagielska E, Zieli ski Z EW-R (2004) A non-classical type of alveolar macrophage response to Trichinella spiralis infection. Parasite Immunol 26(4):197–205

    Article  PubMed  CAS  Google Scholar 

  43. Puneet P, McGrath MA, Tay HK, Al-Riyami L, Rzepecka J, Moochhala SM, Pervaiz S, Harnett MM, Harnett W, Melendez AJ (2011) The helminth product ES-62 protects against septic shock via Toll-like receptor 4-dependent autophagosomal degradation of the adaptor MyD88. Nat Immunol 12(4):344–351

    Article  PubMed  CAS  Google Scholar 

  44. Dirgahayu P, Fukumoto S, Tademoto S, Kina Y, Hirai K (2004) Excretory/secretory products from plerocercoids of Spirometra erinaceieuropaei suppress interleukin-1β gene expression in murine macrophages. Int J Parasitol 34(5):577–584

    Article  PubMed  CAS  Google Scholar 

  45. Wu Z, Nagano I, Asano K, Takahashi Y (2010) Infection of non-encapsulated species of Trichinella ameliorates experimental autoimmune encephalomyelitis involving suppression of Th17 and Th1 response. Parasitol Res 107(5):1173–1188

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National S & T Major Program (Grant No. 2008ZX10004-11) and the National Natural Science Foundation of China (Grant No. 30825033, 31030064, 30972177, 30950110328, 81070311 and 31072124), most 2010CB530000 and 2011AA10A200.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Wang or Mingyuan Liu.

Additional information

Xue Bai, Xiuping Wu, Xuelin Wang and Zhenhong Guan contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, X., Wu, X., Wang, X. et al. Regulation of cytokine expression in murine macrophages stimulated by excretory/secretory products from Trichinella spiralis in vitro. Mol Cell Biochem 360, 79–88 (2012). https://doi.org/10.1007/s11010-011-1046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1046-4

Keywords

Navigation