Skip to main content
Log in

Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Acetate supplementation increases brain, heart, and liver acetyl-CoA levels and reduces lipopolysaccharide-induced neuroinflammation. Because intracellular acetyl-CoA can be used to alter histone acetylation-state, using Western blot analysis, we measured the temporal effect that acetate supplementation had on brain and liver histone acetylation following a single oral dose of glyceryl triacetate (6 g/kg). In parallel experiments, we measured the effect that acetate supplementation had on histone deacetylase (HDAC) and histone acetyltransferase (HAT) enzymic activities and the expression levels of HDAC class I and II enzymes using Western blot analysis. We found that acetate supplementation increased the acetylation-state of brain histone H4 at lysine 8 at 2 and 4 h, histone H4 at lysine 16 at 4 and 24 h, and histone H3 at lysine 9 at 4 h following treatment. No changes in other forms of brain or liver H3 and H4 acetylation-state were found at any post-treatment times measured. Enzymic HAT and HDAC assays on brain extracts showed that acetate supplementation had no effect on HAT activity, but significantly inhibited by 2-fold HDAC activity at 2 and 4 h post-treatment. Western blot analysis demonstrated that HDAC 2 levels were decreased at 4 h following treatment. Based on these results, we conclude that acetyl-CoA derived from acetate supplementation increases brain histone acetylation-state by reducing HDAC activity and expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Namboodiri AM, Peethambaran A, Mathew R, Sambhu PA, Hershfield J, Moffett JR, Madhavarao CN (2006) Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol Cell Endocrinol 252:216–223

    Article  PubMed  CAS  Google Scholar 

  2. Madhavarao CN, Arun P, Anikster Y, Mog SR, Staretz-Chacham O, Moffett JR, Grunberg NE, Gahl WA and Namboodiri AM (2009) Glyceryl triacetate for Canavan disease: a low-dose trial in infants and evaluation of a higher dose for toxicity in the tremor rat model. J Inherit Metab Dis 32:640–650

    Google Scholar 

  3. Arun P, Madhavarao CN, Moffett JR, Hamilton K, Grunberg NE, Ariyannur PS, Gahl WA, Anikster Y, Mog S, Hallows WC, Denu JM, Namboodiri AM (2010) Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease. J Inherit Metab Dis 33:195–210

    Article  PubMed  Google Scholar 

  4. Arun P, Ariyannur PS, Moffett JR, Xing G, Hamilton K, Grunberg NE, Ives JA, Namboodiri AM (2010) Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotrauma 27:293–298

    Article  PubMed  Google Scholar 

  5. Reisenauer CJ, Bhatt DP, Mitteness DJ, Slanczka ER, Gienger HM, Watt JA and Rosenberger TA (2011) Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation. J Neurochem. doi:10.1111/j.1471-4159.2011.07198.x

    PubMed  Google Scholar 

  6. Ariyannur PS, Moffett JR, Madhavarao CN, Arun P, Vishnu N, Jacobowitz DM, Hallows WC, Denu JM, Namboodiri AM (2010) Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. J Comp Neurol 518:2952–2977

    Article  PubMed  CAS  Google Scholar 

  7. Fujino T, Kondo J, Ishikawa M, Morikawa K, Yamamoto TT (2001) Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J Biol Chem 276:11420–11426

    Article  PubMed  CAS  Google Scholar 

  8. Deutsch J, Rapoport SI, Rosenberger TA (2002) Coenzyme A and short-chain acyl-CoA species in control and ischemic rat brain. Neurochem Res 27:1577–1582

    Article  PubMed  CAS  Google Scholar 

  9. Des Rosiers C, David F, Garneau M, Brunengraber H (1991) Nonhomogeneous labeling of liver mitochondrial acetyl-CoA. J Biol Chem 266:1574–1578

    PubMed  CAS  Google Scholar 

  10. McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 49:395–420

    Article  PubMed  CAS  Google Scholar 

  11. Fukao T, Lopaschuk GD, Mitchell GA (2004) Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 70:243–251

    Article  PubMed  CAS  Google Scholar 

  12. Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, Allis CD, Marmorstein R, Denu JM (1999) Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem 274:18157–18160

    Article  PubMed  CAS  Google Scholar 

  13. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  14. Gorisch SM, Wachsmuth M, Toth KF, Lichter P, Rippe K (2005) Histone acetylation increases chromatin accessibility. J Cell Sci 118:5825–5834

    Article  PubMed  Google Scholar 

  15. Wade PA (2001) Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet 10:693–698

    Article  PubMed  CAS  Google Scholar 

  16. Shi L, Wu J (2009) Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 7:59

    Article  PubMed  Google Scholar 

  17. Haumaitre C, Lenoir O, Scharfmann R (2009) Directing cell differentiation with small-molecule histone deacetylase inhibitors: the example of promoting pancreatic endocrine cells. Cell Cycle 8:536–544

    Article  PubMed  CAS  Google Scholar 

  18. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    Article  PubMed  CAS  Google Scholar 

  19. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559

    Article  PubMed  CAS  Google Scholar 

  20. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807

    Article  PubMed  CAS  Google Scholar 

  21. Sharma SK (2010) Protein acetylation in synaptic plasticity and memory. Neurosci Biobehav Rev 34:1234–1240

    Article  PubMed  CAS  Google Scholar 

  22. Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    Article  PubMed  CAS  Google Scholar 

  23. Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T, Wood MA (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 27:6128–6140

    Article  PubMed  CAS  Google Scholar 

  24. Balasubramaniyan V, Boddeke E, Bakels R, Kust B, Kooistra S, Veneman A, Copray S (2006) Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 143:939–951

    Article  PubMed  CAS  Google Scholar 

  25. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321:892–901

    Article  PubMed  CAS  Google Scholar 

  26. Rouaux C, Panteleeva I, Rene F, Gonzalez de Aguilar JL, Echaniz-Laguna A, Dupuis L, Menger Y, Boutillier AL, Loeffler JP (2007) Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J Neurosci 27:5535–5545

    Article  PubMed  CAS  Google Scholar 

  27. Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, Kozikowski AP, Lyeth BG (2008) HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res 1226:181–191

    Article  PubMed  CAS  Google Scholar 

  28. Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ, Ratan RR (2003) Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci USA 100:4281–4286

    Article  PubMed  CAS  Google Scholar 

  29. McCampbell A, Taye AA, Whitty L, Penney E, Steffan JS, Fischbeck KH (2001) Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci USA 98:15179–15184

    Article  PubMed  CAS  Google Scholar 

  30. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743

    Article  PubMed  CAS  Google Scholar 

  31. Kargas G, Rudy T, Spennetta T, Takayama K, Querishi N, Shrago E (1990) Separation and quantitation of long-chain free fatty acids in human serum by high-performance liquid chromatography. J Chromatogr 526:331–340

    Article  PubMed  CAS  Google Scholar 

  32. Kim JS, Shukla SD (2006) Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol 41:126–132

    PubMed  CAS  Google Scholar 

  33. Shechter D, Dormann HL, Allis CD, Hake SB (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457

    Article  PubMed  CAS  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  35. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  Google Scholar 

  36. Avalos JL, Bever KM, Wolberger C (2005) Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 17:855–868

    Article  PubMed  CAS  Google Scholar 

  37. Sanders BD, Zhao K, Slama JT, Marmorstein R (2007) Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes. Mol Cell 25:463–472

    Article  PubMed  CAS  Google Scholar 

  38. Peterson CL (2002) HDAC’s at work: everyone doing their part. Mol Cell 9:921–922

    Article  PubMed  CAS  Google Scholar 

  39. Clarke DJ, O’Neill LP, Turner BM (1993) Selective use of H4 acetylation sites in the yeast Saccharomyces cerevisiae. Biochem J 294(Pt 2):557–561

    PubMed  CAS  Google Scholar 

  40. Turner BM, O’Neill LP, Allan IM (1989) Histone H4 acetylation in human cells. Frequency of acetylation at different sites defined by immunolabeling with site-specific antibodies. FEBS Lett 253:141–145

    Article  PubMed  CAS  Google Scholar 

  41. Thorne AW, Kmiciek D, Mitchelson K, Sautiere P, Crane-Robinson C (1990) Patterns of histone acetylation. Eur J Biochem 193:701–713

    Article  PubMed  CAS  Google Scholar 

  42. Makowski AM, Dutnall RN, Annunziato AT (2001) Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J Biol Chem 276:43499–43502

    Article  PubMed  CAS  Google Scholar 

  43. Santini V, Gozzini A, Ferrari G (2007) Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr Drug Metab 8:383–393

    Article  PubMed  CAS  Google Scholar 

  44. Langley B, Gensert JM, Beal MF, Ratan RR (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 4:41–50

    Article  PubMed  CAS  Google Scholar 

  45. Morrison BE, Majdzadeh N, D’Mello SR (2007) Histone deacetylases: focus on the nervous system. Cell Mol Life Sci 64:2258–2269

    Article  PubMed  CAS  Google Scholar 

  46. Blanchard F, Chipoy C (2005) Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 10:197–204

    Article  PubMed  CAS  Google Scholar 

  47. Adcock IM (2007) HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol 150:829–831

    Article  PubMed  CAS  Google Scholar 

  48. Li Y, Yuan Z, Liu B, Sailhamer EA, Shults C, Velmahos GC, Demoya M, Alam HB (2008) Prevention of hypoxia-induced neuronal apoptosis through histone deacetylase inhibition. J Trauma 64:863–870 discussion 870-1

    Article  PubMed  CAS  Google Scholar 

  49. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  PubMed  CAS  Google Scholar 

  50. Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR (1996) Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol 16:4349–4356

    PubMed  CAS  Google Scholar 

  51. Li X, Corsa CA, Pan PW, Wu L, Ferguson D, Yu X, Min J, Dou Y (2010) MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 30:5335–5347

    Article  PubMed  CAS  Google Scholar 

  52. Mathew R, Arun P, Madhavarao CN, Moffett JR, Namboodiri MA (2005) Progress toward acetate supplementation therapy for Canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain. J Pharmacol Exp Ther 315:297–303

    Article  PubMed  CAS  Google Scholar 

  53. Bourre JM, Paturneau-Jouas MY, Daudu OL, Baumann NA (1977) Lignoceric acid biosynthesis in the developing brain. Activities of mitochondrial acetyl-CoA-dependent synthesis and microsomal malonyl-CoA chain-elongating system in relation to myelination. Comparison between normal mouse and dysmyelinating mutants (quaking and jimpy). Eur J Biochem 72:41–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This publication was made possible by a Grant from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) (# P20RR17699-05). We would also like to thank Dr. Colin Combs for providing the α-tubulin antibodies and goat anti-mouse IgM used for Western blot analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thad A. Rosenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliman, M.L., Rosenberger, T.A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem 352, 173–180 (2011). https://doi.org/10.1007/s11010-011-0751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0751-3

Keywords

Navigation