Skip to main content
Log in

Acylation of the Rat Brain Proteins is Affected by the Inhibition of Pyruvate Dehydrogenase in vivo

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Organism adaptation to metabolic challenges requires coupling of metabolism to gene expression. In this regard, acylations of histones and metabolic proteins acquire significant interest. We hypothesize that adaptive response to inhibition of a key metabolic process, catalyzed by the acetyl-CoA-generating pyruvate dehydrogenase (PDH) complex, is mediated by changes in the protein acylations. The hypothesis is tested by intranasal administration to animals of PDH-specific inhibitors acetyl(methyl)phosphinate (AcMeP) or acetylphosphonate methyl ester (AcPMe), followed by the assessment of physiological parameters, brain protein acylation, and expression/phosphorylation of PDHA subunit. At the same dose, AcMeP, but not AcPMe, decreases acetylation and increases succinylation of the brain proteins with apparent molecular masses of 15-20 kDa. Regarding the proteins of 30-50 kDa, a strong inhibitor AcMeP affects acetylation only, while a less efficient AcPMe mostly increases succinylation. The unchanged succinylation of the 30-50 kDa proteins after the administration of AcMeP coincides with the upregulation of desuccinylase SIRT5. No significant differences between the levels of brain PDHA expression, PDHA phosphorylation, parameters of behavior or ECG are observed in the studied animal groups. The data indicate that the short-term inhibition of brain PDH affects acetylation and/or succinylation of the brain proteins, that depends on the inhibitor potency, protein molecular mass, and acylation type. The homeostatic nature of these changes is implied by the stability of physiological parameters after the PDH inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Table 1.
Fig. 4.
Table 2.
Fig. 5.
Table 3.
Table 4.
Fig. 6.

Similar content being viewed by others

Abbreviations

MDH:

malate dehydrogenase

OGDH:

2-oxoglutarate dehydrogenase (alpha-ketoglutarate dehydrogenase)

PDH:

pyruvate dehydrogenase

PDHA:

alpha subunit of PDH

RMSSD:

the root mean square of successive differences in R-R intervals

R-R interval:

the interval between the heartbeats

SD:

the standard deviation of R-R interval

SI:

stress index

References

  1. Joseph, A. D. A., Robert, A. T., and Lawrence, R. G. (1980) Concentration-Dependent effects of sodium butyrate in Chinese hamster cells: cell-cycle progression, inner-histone acetylation, histone H1 dephosphorylation, and induction of an H1-like protein, Biochemistry, 19, 2656-2671, https://doi.org/10.1021/BI00553A019.

    Article  Google Scholar 

  2. Fischle, W., Wang, Y., and Allis, C. D. (2003) Histone and chromatin cross-talk, Curr. Opin. Cell Biol., 15, 172-183, https://doi.org/10.1016/s0955-0674(03)00013-9.

    Article  CAS  PubMed  Google Scholar 

  3. Jeans, C., Thelen, M. P., and Noy, A. (2006) Single molecule studies of chromatin, Front. Cell Dev. Biol., 9, 699771, https://doi.org/10.2172/877892.

    Article  Google Scholar 

  4. Akiyama, S. K., and Hammes, G. G. (1980) Elementary steps in the reaction mechanism of the pyruvate dehydrogenase multienzyme complex from Escherichia coli: kinetics of acetylation and deacetylation, Biochemistry, 19, 4208-4213, https://doi.org/10.1021/BI00559A011.

    Article  CAS  PubMed  Google Scholar 

  5. Waskiewicz, D. E., and Hammes, G. G. (1984) Elementary steps in the reaction mechanism of the α-ketoglutarate dehydrogenase multienzyme complex from Escherichia coli: kinetics of succinylation and desuccinylation, Biochemistry, 23, 3136-3143, https://doi.org/10.1021/BI00309A005.

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Y., Shi, Z., and Bao, L. (2022) An expanding repertoire of protein acylations, Mol. Cell. Proteomics, 21, 100193, https://doi.org/10.1016/J.MCPRO.2022.100193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bruzzone, S., Parenti, M. D., Grozio, A., Ballestrero, A., Bauer, I., del Rio, A., and Nencioni, A. (2013) Rejuvenating sirtuins: the rise of a new family of cancer drug targets, Ingentaconnect. Com., 19, 614-623, https://doi.org/10.2174/138161213804581954.

    Article  CAS  Google Scholar 

  8. Grabowska, W., Sikora, E., and Bielak-Zmijewska, A. (2017) Sirtuins, a promising target in slowing down the ageing process, Biogerontology, 18, 447-476, https://doi.org/10.1007/S10522-017-9685-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sutendra, G., Kinnaird, A., Dromparis, P., Paulin, R., Stenson, T. H., Haromy, A., Hashimoto, K., Zhang, N., Flaim, E., and Michelakis, E. D. (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of Acetyl-CoA and histone acetylation, Cell, 158, 84-97, https://doi.org/10.1016/J.CELL.2014.04.046.

    Article  CAS  PubMed  Google Scholar 

  10. Chueh, F. Y., Leong, K. F., Cronk, R. J., Venkitachalam, S., Pabich, S., and Yu, C. L. (2011) Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription, Cell Signal., 23, 1170-1178, https://doi.org/10.1016/J.CELLSIG.2011.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y., Guo, Y. R., Liu, K., Yin, Z., Liu, R., Xia, Y., Tan, L., Yang, P., Lee, J. H., Li, X. J., Hawke, D., Zheng, Y., Qian, X., Lyu, J., He, J., Xing, D., Tao, Y. J., and Lu, Z. (2017) KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase, Nature, 552, 273-277, https://doi.org/10.1038/NATURE25003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, S., Pfleger, J., Jeon, Y. H., Yang, Z., He, M., Shin, H., Sayed, D., Astrof, S., and Abdellatif, M. (2019) Oxoglutarate dehydrogenase and acetyl-CoA acyltransferase 2 selectively associate with H2A. Z-occupied promoters and are required for histone modifications, Biochim. Biophys. Acta Gene Regul. Mech., 1862, 194436, https://doi.org/10.1016/J.BBAGRM.2019.194436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyko, A. I., Karlina, I. S., Zavileyskiy, L. G., Aleshin, V. A., Artiukhov, A. V., Kaehne, T., Ksenofontov, A. L., Ryabov, S. I., Graf, A. V., Tramonti, A., and Bunik, V. I. (2022) Delayed impact of 2-oxoadipate dehydrogenase inhibition on the rat brain metabolism is linked to protein glutarylation, Front. Med., 9, 896263, https://doi.org/10.3389/fmed.2022.896263.

    Article  Google Scholar 

  14. Gibson, G. E., Xu, H., Chen, H.-L., Chen, W., Denton, T. T., and Zhang, S. Z. (2015) Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines, J. Neurochem., 134, 86-96, https://doi.org/10.1111/jnc.13096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zavileyskiy, L. G., Aleshin, V. A., Kaehne, T., Karlina, I. S., Artiukhov, A. V., Maslova, M. V., Graf, A. V., and Bunik, V. I. (2022) The brain protein acylation system responds to seizures in the rat model of PTZ-induced epilepsy, Int. J. Mol. Sci., 23, 12302, https://doi.org/10.3390/ijms232012302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F., and Kroemer, G. (2015) Acetyl coenzyme A: a central metabolite and second messenger, Cell Metab., 21, 805-821, https://doi.org/10.1016/j.cmet.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  17. Mews, P., Donahue, G., Drake, A. M., Luczak, V., Abel, T., and Berger, S. L. (2017) Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory, Nature, 546, 381-386, https://doi.org/10.1038/NATURE22405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pougovkina, O., te Brinke, H., Ofman, R., van Cruchten, A. G., Kulik, W., Wanders, R. J. A., Houten, S. M., and de Boer, V. C. J. (2014) Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation, Hum. Mol. Genet., 23, 3513-3522, https://doi.org/10.1093/HMG/DDU059.

    Article  CAS  PubMed  Google Scholar 

  19. Gräff, J., and Tsai, L.-H. (2013) Histone acetylation: molecular mnemonics on the chromatin, Nat. Rev. Neurosci., 14, 97-111, https://doi.org/10.1038/nrn3427.

    Article  CAS  PubMed  Google Scholar 

  20. Gibson, G. E., Blass, J. P., Beal, M. F., and Bunik, V. (2005) The α-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration, Mol. Neurobiol., 31, 43-63, https://doi.org/10.1385/MN:31:1-3:043.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, Y., Tapias, V., Acosta, D., Xu, H., Chen, H., Bhawal, R., Anderson, E. T., Ivanova, E., Lin, H., Sagdullaev, B. T., Chen, J., Klein, W. L., Viola, K. L., Gandy, S., Haroutunian, V., Beal, M. F., Eliezer, D., Zhang, S., and Gibson, G. E. (2022) Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer’s disease, Nat. Commun., 13, 159, https://doi.org/10.1038/S41467-021-27572-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bunik, V. I., Tylicki, A., and Lukashev, N. V. (2013) Thiamin diphosphate‐dependent enzymes: from enzymology to metabolic regulation, drug design and disease models, FEBS J., 280, 6412-6442, https://doi.org/10.1111/febs.12512.

    Article  CAS  PubMed  Google Scholar 

  23. Bunik, V. I., Artiukhov, A., Kazantsev, A., Goncalves, R., Daloso, D., Oppermann, H., Kulakovskaya, E., Lukashev, N., Fernie, A., Brand, M., and Gaunitz, F. (2015) Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells, Oncotarget, 6, 40036-40052, https://doi.org/10.18632/ONCOTARGET.5486.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nemeria, N. S., Korotchkina, L. G., Chakraborty, S., Patel, M. S., and Jordan, F. (2006) Acetylphosphinate is the most potent mechanism-based substrate-like inhibitor of both the human and Escherichia coli pyruvate dehydrogenase components of the pyruvate dehydrogenase complex, Bioorg. Chem., 34, 362-379, https://doi.org/10.1016/J.BIOORG.2006.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Artiukhov, A. V., Graf, A. V., and Bunik, V. I. (2016) Directed regulation of multienzyme complexes of 2-oxo acid dehydrogenases using phosphonate and phosphinate analogs of 2-oxo acids, Biochemistry (Moscow), 81, 1498-1521, https://doi.org/10.1134/S0006297916120129.

    Article  CAS  PubMed  Google Scholar 

  26. Bunik, V. I., and Fernie, A. R. (2009) Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation, Biochem. J., 422, 405-21, https://doi.org/10.1042/BJ20090722.

    Article  CAS  PubMed  Google Scholar 

  27. Artiukhov, A. V., Aleshin, V. A., Karlina, I. S., Kazantsev, A. v., Sibiryakina, D. A., Ksenofontov, A. L., Lukashev, N. V., Graf, A. V., and Bunik, V. I. (2022) Phosphonate inhibitors of pyruvate dehydrogenase perturb homeostasis of amino acids and protein succinylation in the brain, Int. J. Mol. Sci., 23, 13186, https://doi.org/10.3390/IJMS232113186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Badhan, R. K. S., Kaur, M., Lungare, S., and Obuobi, S. (2014) Improving brain drug targeting through exploitation of the nose-to-brain route: a physiological and pharmacokinetic perspective, Curr. Drug Deliv., 11, 458-471, https://doi.org/10.2174/1567201811666140321113555.

    Article  CAS  PubMed  Google Scholar 

  29. Djupesland, P. G., Messina, J. C., and Mahmoud, R. A. (2014) The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview, Ther. Deliv., 5, 709-733, https://doi.org/10.4155/tde.14.41.

    Article  CAS  PubMed  Google Scholar 

  30. Pierozan, P., Jernerén, F., Ransome, Y., and Karlsson, O. (2017) The choice of euthanasia method affects metabolic serum biomarkers, Basic Clin. Pharmacol. Toxicol., 121, 113-118, https://doi.org/10.1111/BCPT.12774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suckow, M., Stevens, K., and Wilson, R. (2012) The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents, Academic Press.

  32. Underwood, W., and Anthony, R. (2020) AVMA Guidelines for the Euthanasia of Animals: 2020 edition.

  33. Aleshin, V. A., Graf, A. V., Artiukhov, A. V., Boyko, A. I., Ksenofontov, A. L., Maslova, M. V., Nogués, I., di Salvo, M. L., and Bunik, V. I. (2021) Physiological and biochemical markers of the sex-specific sensitivity to epileptogenic factors, delayed consequences of seizures and their response to vitamins B1 and B6 in rat model, Pharmaceuticals (Basel), 14, 737, https://doi.org/10.3390/ph14080737.

    Article  CAS  PubMed  Google Scholar 

  34. Jackson, H. F., and Broadhurst, P. L. (1982) The effects of Parachlorophenylalanine and stimulus intensity on open-field test measures in rats, Neuropharmacology, 21, 1279-1282, https://doi.org/10.1016/0028-3908(82)90133-2.

    Article  CAS  PubMed  Google Scholar 

  35. Liebsch, G., Montkowski, A., Holsboer, F., and Landgraf, R. (1998) Behavioral profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour, Behavioural. Brain Res., 94, 301-310, https://doi.org/10.1016/S0166-4328(97)00198-8.

    Article  CAS  Google Scholar 

  36. Aleshin, V. A., Mkrtchyan, G. V., Kaehne, T., Graf, A. V., Maslova, M. V., and Bunik, V. I. (2020) Diurnal regulation of the function of the rat brain glutamate dehydrogenase by acetylation and its dependence on thiamine administration, Wiley Online Library, 153, 80-102, https://doi.org/10.1111/jnc.14951.

    Article  CAS  Google Scholar 

  37. Tsepkova, P., Artiukhov, A., Boyko, A., Aleshin, V. A., Mkrtchyan, G. V., Zvyagintseva, M. A., Ryabov, S. I., Ksenofontov, A. L., Baratova, L. A., Graf, A. V., and Bunik, V. I. (2017) Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain, Biochemistry (Moscow), 82, 723-736, https://doi.org/10.1134/S0006297917060098.

    Article  CAS  PubMed  Google Scholar 

  38. Ladner, C. L., Yang, J., Turner, R. J., and Edwards, R. A. (2004) Visible fluorescent detection of proteins in polyacrylamide gels without staining, Anal. Biochem., 326, 13-20, https://doi.org/10.1016/J.AB.2003.10.047.

    Article  CAS  PubMed  Google Scholar 

  39. Kim, E. Y., Kim, W. K., Kang, H. J., Kim, J. H., Chung, S. J., Seo, Y. S., Park, S. G., Lee, S. C., and Bae, K. H. (2012) Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity, J. Lipid Res., 53, 1864-1876, https://doi.org/10.1194/JLR.M026567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tong, W. H., Maio, N., Zhang, D. L., Palmieri, E. M., Ollivierre, H., Ghosh, M. C., McVicar, D. W., and Rouault, T. A. (2018) TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation, Blood Adv, 2, 1146-1156, https://doi.org/10.1182/BLOODADVANCES.2018015669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., and Skrzypek, E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations, Nucleic Acids Res., 43, D512-520, https://doi.org/10.1093/nar/gku1267.

    Article  CAS  PubMed  Google Scholar 

  42. Arumugam, R., Horowitz, E., Noland, R. C., Lu, D., Fleenor, D., and Freemark, M. (2010) Regulation of islet β-cell pyruvate metabolism: interactions of prolactin, glucose, and dexamethasone, Endocrinology, 151, 3074-3083, https://doi.org/10.1210/EN.2010-0049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Consitt, L. A., Saxena, G., Saneda, A., and Houmard, J. A. (2016) Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training, J. Physiol. Endocrinol. Metab., 311, E145-156, https://doi.org/10.1152/ajpendo.00452.2015.

    Article  Google Scholar 

  44. Hossain, A. J., Islam, R., Kim, J.-G., Dogsom, O., Cap, K. C., and Park, J.-B. (2022) Pyruvate dehydrogenase A1 phosphorylated by insulin associates with pyruvate kinase M2 and induces LINC00273 through histone acetylation, Biomedicines, 10, 1256, https://doi.org/10.3390/BIOMEDICINES10061256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Denton, R. M., McCormack, J. G., Rutter, G. A., Burnett, P., Edgell, N. J., Moule, S. K., and Diggle, T. A. (1996) The hormonal regulation of pyruvate dehydrogenase complex, Adv. Enzyme Regul., 36, 183-198, https://doi.org/10.1016/0065-2571(95)00020-8.

    Article  CAS  PubMed  Google Scholar 

  46. Kim, W., and Kaelin, J. W. G. (2003) The von Hippel-Lindau tumor suppressor protein: new insights into oxygen sensing and cancer, Curr. Opin. Genet Dev., 13, 55-60, https://doi.org/10.1016/S0959-437X(02)00010-2.

    Article  CAS  PubMed  Google Scholar 

  47. Li, X., Jiang, Y., Meisenhelder, J., Yang, W., Hawke, D. H., Zheng, Y., Xia, Y., Aldape, K., He, J., Hunter, T., Wang, L., and Lu, Z. (2016) Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis, Mol. Cell, 61, 705-719, https://doi.org/10.1016/J.MOLCEL.2016.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nie, H., Ju, H., Fan, J., Shi, X., Cheng, Y., Cang, X., Zheng, Z., Duan, X., and Yi, W. (2020) O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth, Nat. Commun., 11, 36, https://doi.org/10.1038/S41467-019-13601-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J., Nieland, T. J. F., Zhou, Y., Wang, X., Mazitschek, R., Bradner, J. E., DePinho, R. A., Jaenisch, R., and Tsai, L. H. (2009) HDAC2 negatively regulates memory formation and synaptic plasticity, Nature, 459, 55-60, https://doi.org/10.1038/NATURE07925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, X., Zhang, J., Li, D., He, C., He, K., Xue, T., Wan, L., Zhang, C., and Liu, Q. (2021) Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory, Neuron, 109, 957-970.e8, https://doi.org/10.1016/J.NEURON.2021.01.005.

    Article  CAS  PubMed  Google Scholar 

  51. Stilling, R. M., and Fischer, A. (2011) The role of histone acetylation in age-associated memory impairment and Alzheimer’s disease, Neurobiol. Learn Mem., 96, 19-26, https://doi.org/10.1016/J.NLM.2011.04.002.

    Article  CAS  PubMed  Google Scholar 

  52. Shields, G. S., Sazma, M. A., McCullough, A. M., and Yonelinas, A. P. (2017) The effects of acute stress on episodic memory: A meta-analysis and integrative review, Psychol. Bull., 143, 636-675, https://doi.org/10.1037/BUL0000100.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goldfarb, E. V. (2019) Enhancing memory with stress: Progress, challenges, and opportunities, Brain Cogn., 133, 94-105, https://doi.org/10.1016/J.BANDC.2018.11.009.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 18-14-00116 to V.I.B.).

Author information

Authors and Affiliations

Authors

Contributions

V.I.B developed the concept, supervised the study, wrote and edited the manuscript, obtained the funding, and administered the project. A.V.G. designed, supervised, and analyzed animal experiments; V.A.A. studied protein acylations, validated and visualized biochemical results; D.A.S. performed animal experiments and studied expression and phosphorylation of PDHA; A.V.K. provided the pyruvate analogs. All the co-authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Victoria I. Bunik.

Ethics declarations

All animal experiments were performed according to the guidelines of the Declaration of Helsinki and were approved by Bioethics Committee of Lomonosov Moscow State University (protocol no. 139-a from 11 November 2021). The authors declare no conflict of interest. The funding sponsors had no role in the design of the study, collection, analysis, and interpretation of the data, writing of the manuscript, and decision to publish the results.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, V.A., Sibiryakina, D.A., Kazantsev, A.V. et al. Acylation of the Rat Brain Proteins is Affected by the Inhibition of Pyruvate Dehydrogenase in vivo. Biochemistry Moscow 88, 105–118 (2023). https://doi.org/10.1134/S0006297923010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923010091

Keywords

Navigation