Skip to main content
Log in

Acetate Treatment Increases Fatty Acid Content in LPS-Stimulated BV2 Microglia

  • Original Article
  • Published:
Lipids

Abstract

Acetate supplementation increases plasma acetate, brain acetyl-CoA, histone acetylation, phosphocreatine levels, and is anti-inflammatory in models of neuroinflammation and neuroborreliosis. Although radiolabeled acetate is incorporated into the cellular lipid pools, the effect that acetate supplementation has on lipid deposition has not been quantified. To determine the impact acetate-treatment has on cellular lipid content, we investigated the effect of acetate in the presence of bacterial lipopolysaccharide (LPS) on fatty acid, phospholipid, and cholesterol content in BV2 microglia. We found that 1, 5, and 10 mM of acetate in the presence of LPS increased the total fatty acid content in BV2 cells by 23, 34, and 14 % at 2 h, respectively. Significant increases in individual fatty acids were also observed with all acetate concentrations tested with the greatest increases occurring with 5 mM acetate in the presence of LPS. Treatment with 5 mM acetate in the absence of LPS increased total cholesterol levels by 11 %. However, neither treatment in the absence of LPS significantly altered the content of individual phospholipids or total phospholipid content. To determine the minimum effective concentration of acetate we measured the time- and concentration-dependent changes in histone acetylation using western blot analysis. These studies showed that 5 mM acetate was necessary to induce histone acetylation and at 10 mM acetate, the histone acetylation-state increased as early as 0.5 h following the start of treatment. These data suggest that acetate increases fatty acid content in LPS-stimulated BV2 microglia that is reflected by an increase in fatty acids esterified into membrane phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

AMP:

Adenosine monophosphate

ARA:

Arachidonate

ChoGpl:

Choline glycerophospholipid

CerPCho:

Sphingomyelin

DGLA:

Dihomo-γ-linoleate

DHA:

Docosahexaenoate

DMEM/F12:

Dulbecco’s modified eagle medium/nutrient mixture F-12

EtnGpl:

Ethanolamine glycerophospholipid

EDTA:

Ethylenediamine tetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

EPA:

Eicosapentaenoate

FBS:

Fetal bovine serum

GTA:

Glyceryl triacetate

H3K9:

Histone H3 lysine 9

H4S1/K5/K8/K12:

Histone H4 serine 1, and lysine 5, 8, or 12

HEPES:

2-[4-(2-Hydroxyethyl)piperazine-1-yl]ethanesulfonic acid

HMGCS:

3-Hydroxy-3-methylglutaryl CoA synthase

KH2PO4 :

Potassium phosphate

LNA:

Linoleate

LPS:

Lipopolysaccharide

NaOAc:

Sodium acetate

NaCl:

Sodium chloride

OLA:

Oleate

PAM:

Palmitate

PBS:

Phosphate buffer saline

PtdIns:

Phosphatidylinositol

PtdSer:

Phosphatidylserine

SDS:

Sodium dodecyl sulfate

STA:

Stearate

TTBS:

Tris buffered saline containing Tween 20

TCA:

Tricarboxylic acid

TLC:

Thin layer chromatography

References

  1. Reisenauer CJ, Bhatt DP, Mitteness DJ, Slanczka ER, Gienger HM, Watt JA, Rosenberger TA (2011) Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation. J Neurochem 117:264–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Brissette CA, Houdek HM, Floden AM, Rosenberger TA (2012) Acetate supplementation reduces microglia activation and brain interleukin-1beta levels in a rat model of Lyme neuroborreliosis. J Neuroinflammation 9:249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Arun P, Madhavarao CN, Moffett JR, Hamilton K, Grunberg NE, Ariyannur PS, Gahl WA, Anikster Y, Mog S, Hallows WC, Denu JM, Namboodiri AM (2010) Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease. J Inherit Metab Dis 33:195–210

    Article  PubMed Central  PubMed  Google Scholar 

  4. Arun P, Ariyannur PS, Moffett JR, Xing G, Hamilton K, Grunberg NE, Ives JA, Namboodiri AM (2010) Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotrauma 27:293–298

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tsen AR, Long PM, Driscoll HE, Davies MT, Teasdale BA, Penar PL, Pendlebury WW, Spees JL, Lawler SE, Viapiano MS, Jaworski DM (2013) Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma. Int J Cancer 134(6):1300–1310

    Article  PubMed  Google Scholar 

  6. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103:10230–10235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Soliman ML, Rosenberger TA (2011) Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem 352:173–180

    Article  CAS  PubMed  Google Scholar 

  8. Soliman ML, Smith MD, Houdek HM, Rosenberger TA (2012) Acetate supplementation modulates brain histone acetylation and decreases interleukin-1beta expression in a rat model of neuroinflammation. J Neuroinflammation 9:51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Soliman ML, Combs CK, Rosenberger TA (2013) Modulation of inflammatory cytokines and mitogen-activated protein kinases by acetate in primary astrocytes. J Neuroimmune Pharmacol 8:287–300

    Article  PubMed Central  PubMed  Google Scholar 

  10. Soliman ML, Puig KL, Combs CK, Rosenberger TA (2012) Acetate reduces microglia inflammatory signaling in vitro. J Neurochem 123:555–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bhatt DP, Houdek HM, Watt JA, Rosenberger TA (2013) Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis. Neurochem Int 62:296–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hellman L, Rosenfeld RS, Gallagher TF (1954) Cholesterol synthesis from C14-acetate in man. J Clin Invest 33:142–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Howard BV, Howard WJ, Bailey JM (1974) Acetyl coenzyme A synthetase and the regulation of lipid synthesis from acetate in cultured cells. J Biol Chem 249:7912–7921

    CAS  PubMed  Google Scholar 

  14. Li S, Clements R, Sulak M, Gregory R, Freeman E, McDonough J (2013) Decreased NAA in gray matter is correlated with decreased availability of acetate in white matter in postmortem multiple sclerosis cortex. Neurochem Res 38:2385–2396

    Article  CAS  PubMed  Google Scholar 

  15. Giusto NM, Salvador GA, Castagnet PI, Pasquare SJ, Ilincheta de Boschero MG (2002) Age-associated changes in central nervous system glycerolipid composition and metabolism. Neurochem Res 27:1513–1523

    Article  CAS  PubMed  Google Scholar 

  16. Ji A, Diao H, Wang X, Yang R, Zhang J, Luo W, Cao R, Cao Z, Wang F, Cai T (2012) n-3 Polyunsaturated fatty acids inhibit lipopolysaccharide-induced microglial activation and dopaminergic injury in rats. Neurotoxicology 33:780–788

    Article  CAS  PubMed  Google Scholar 

  17. Bocchini V, Mazzolla R, Barluzzi R, Blasi E, Sick P, Kettenmann H (1992) An immortalized cell line expresses properties of activated microglial cells. J Neurosci Res 31:616–621

    Article  CAS  PubMed  Google Scholar 

  18. Murphy EJ, Haun SE, Rosenberger TA, Horrocks LA (1995) Altered lipid metabolism in the presence and absence of extracellular Ca2+ during combined oxygen-glucose deprivation in primary astrocyte cultures. J Neurosci Res 42:109–116

    Article  CAS  PubMed  Google Scholar 

  19. Jolly CA, Hubbell T, Behnke WD, Schroeder F (1997) Fatty acid binding protein: stimulation of microsomal phosphatidic acid formation. Arch Biochem Biophys 341:112–121

    Article  CAS  PubMed  Google Scholar 

  20. Breckenridge WC, Kuksis A (1968) Specific distribution of short-chain fatty acids in molecular distillates of bovine milk fat. J Lipid Res 9:388–393

    CAS  PubMed  Google Scholar 

  21. Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86

    Article  CAS  PubMed  Google Scholar 

  22. Akesson B, Elovson J, Arvidson G (1970) Initial incorporation into rat liver glycerolipids of intraportally injected (3H) glycerol. Biochim Biophys Acta 210:15–27

    Article  CAS  PubMed  Google Scholar 

  23. Bowman RE, Wolf RC (1962) A rapid and specific ultramicro method for total serum cholesterol. Clin Chem 8:302–309

    CAS  PubMed  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  25. Galdieri L, Vancura A (2012) Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem 287:23865–23876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62:1784–1803

    Article  CAS  PubMed  Google Scholar 

  27. Hoang JJ, Baron S, Volle DH, Lobaccaro JM, Trousson A (2013) Lipids, LXRs and prostate cancer: are HDACs a new link? Biochem Pharmacol 86:168–174

    Article  CAS  PubMed  Google Scholar 

  28. You M, Fischer M, Deeg MA, Crabb DW (2002) Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 277:29342–29347

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine RN, Harry GJ, Rapoport SI (2004) Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 88:1168–1178

    Article  CAS  PubMed  Google Scholar 

  30. Feingold KR, Moser A, Patzek SM, Shigenaga JK, Grunfeld C (2009) Infection decreases fatty acid oxidation and nuclear hormone receptors in the diaphragm. J Lipid Res 50:2055–2063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Feingold KR, Wang Y, Moser A, Shigenaga JK, Grunfeld C (2008) LPS decreases fatty acid oxidation and nuclear hormone receptors in the kidney. J Lipid Res 49:2179–2187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Memon RA, Feingold KR, Moser AH, Fuller J, Grunfeld C (1998) Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am J Physiol 274:E210–E217

    CAS  PubMed  Google Scholar 

  33. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A, Grunfeld C (2012) Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol 92:829–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Huang YL, Morales-Rosado J, Ray J, Myers TG, Kho T, Lu M, Munford RS (2013) Toll-like receptor agonists promote prolonged triglyceride storage in macrophages. J Biol Chem 289(5):3001–3012

    Article  PubMed  Google Scholar 

  35. Dufort FJ, Gumina M, Ta NL, Tao Y, Heyse S, Scott DA, Richardson AD, Seyfried TN, Chiles TC (2014) Glucose-dependent de novo lipogenesis in B lymphocytes: a requirement for ATP-citrate lyase in LPS-induced differentiation. J Biol Chem 289(10):7011–7024

    CAS  PubMed  Google Scholar 

  36. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed Central  PubMed  Google Scholar 

  37. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  PubMed  Google Scholar 

  38. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM, Jacobson MP, Verdin E (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12:654–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hirschey MD, Shimazu T, Capra JA, Pollard KS, Verdin E (2011) SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging (Albany NY) 3:635–642

    CAS  Google Scholar 

  41. Soliman ML, Ohm JE, Rosenberger TA (2013) Acetate reduces PGE2 release and modulates phospholipase and cyclooxygenase levels in neuroglia stimulated with lipopolysaccharide. Lipids 48:651–662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was supported by a University of North Dakota School of Medicine and Health Sciences seed grant and a grant from the NIH/NIGMS (P30GM103329).

Conflict of interest

The authors declare no conflict of interests with the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thad A. Rosenberger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, D.P., Rosenberger, T.A. Acetate Treatment Increases Fatty Acid Content in LPS-Stimulated BV2 Microglia. Lipids 49, 621–631 (2014). https://doi.org/10.1007/s11745-014-3911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3911-x

Keywords

Navigation