Skip to main content

Advertisement

Log in

Suppression of the androgen receptor function by quercetin through protein–protein interactions of Sp1, c-Jun, and the androgen receptor in human prostate cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have previously reported that the increase in c-Jun expression induced by quercetin inhibited androgen receptor (AR) transactivation, and Sp1 was involved in quercetin-mediated downregulation of AR activity. Transient transfection assays in this work revealed that co-expression of c-Jun quenched Sp1-induced production of luciferase activity driven by AR promoter or three copies of Sp1 binding elements in the AR promoter. Moreover, c-Jun repressed AR-mediated luciferase activity via androgen-response elements (AREs) of the hK2 gene, while this suppression could be restored partially by cotransfection of Sp1 expression plasmid. The physical associations of c-Jun, Sp1, and AR induced by quercetin were further demonstrated by co-immunoprecipitation experiments. In addition, quercetin-mediated repression of AR expression and activity was partially reversed by blocking of JNK signaling pathway. These results suggested that c-Jun might play an important role in the suppression of AR expression and activity in the presence of quercetin, and association of a c-Jun/Sp1/AR protein complex induced by quercetin represented a novel mechanism that was involved in down-regulation of the AR function in prostate cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor

ARE:

Androgen-response element

AP-1:

Activator protein-1

hK2:

Human glandular kallikrein

Mib:

Mibolerone

PSA:

Prostate-specific antigen

Sp1:

Promoter specificity protein 1

References

  1. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895. doi:10.1126/science.3283939

    Article  CAS  PubMed  Google Scholar 

  2. Eder IE, Culig Z, Putz T et al (2001) Molecular biology of the androgen receptor: from molecular understanding to the clinic. Eur Urol 40:241–251. doi:10.1159/000049782

    Article  CAS  PubMed  Google Scholar 

  3. Taplin ME, Balk SP (2004) Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 91:483–490. doi:10.1002/jcb.10653

    Article  CAS  PubMed  Google Scholar 

  4. Culig Z, Bartsch G (2006) Androgen axis in prostate cancer. J Cell Biochem 99:373–381. doi:10.1002/jcb.20898

    Article  CAS  PubMed  Google Scholar 

  5. Devlin HL, Mudryj M (2009) Progression of prostate cancer: multiple pathways to androgen independence. Cancer Lett 27:177–186. doi:10.1016/j.canlet.2008.06.007

    Article  Google Scholar 

  6. Chmelar R, Buchanan G, Need EF et al (2006) Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 120:719–733. doi:10.1002/ijc.22365

    Article  Google Scholar 

  7. Heinlein CA, Chang CS (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23:175–200

    Article  CAS  PubMed  Google Scholar 

  8. Hayes SA, Zarnegar M, Sharma M et al (2001) Smad3 represses androgen receptor mediated transcription. Cancer Res 61:2112–2118

    CAS  PubMed  Google Scholar 

  9. Sato N, Sadar MD, Bruchovsky N et al (1997) Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J Biol Chem 272:17485–17494

    Article  CAS  PubMed  Google Scholar 

  10. Oettgen P, Finger E, Sun Z et al (2000) PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J Biol Chem 275:1216–1225

    Article  CAS  PubMed  Google Scholar 

  11. Zoubeidi A, Zardan A, Beraldi E et al (2007) Cooperative Interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67:10455–10465. doi:10.1158/0008-5472

    Article  CAS  PubMed  Google Scholar 

  12. Perkins ND, Agranoff AB, Pascal E, Nabel GJ (1994) An interaction between the DNA-binding domains of RelA(p65) and Sp1 mediates human immunodeficiency virus gene activation. Mol Cell Biol 14:6570–6583

    CAS  PubMed  Google Scholar 

  13. Strom AC, Forsberg M, Lillhager P, Westin G (1996) The transcription factors Sp1 and Oct-1 interact physically to regulate human U2 snRNA gene expression. Nucleic Acids Res 24:1981–1986

    Article  CAS  PubMed  Google Scholar 

  14. Porter W, Saville B, Hoivik D, Safe S (1997) Functional synergy between the transcription factor Sp1 and the estrogen receptor. Mol Endocrinol 11:1569–1580

    Article  CAS  PubMed  Google Scholar 

  15. Owen GI, Richer JK, Tung L et al (1998) Progesterone regulates transcription of the p21WAF1 cyclin dependent kinase inhibitor gene through Sp1 and CBP/p300. J Biol Chem 273:10696–10701

    Article  CAS  PubMed  Google Scholar 

  16. Curtin D, Jenkins S, Farmer N et al (2001) Androgen suppression of GnRH-stimulated rat LHß gene transcription occurs through Sp1 sites in the distal GnRH-responsive promoter region. Mol Endocrinol 15:1906–1917

    Article  CAS  PubMed  Google Scholar 

  17. Lu S, Jenster G, Epner DE (2000) Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol 14:753–760

    Article  CAS  PubMed  Google Scholar 

  18. Bubulya A, Chen SY, Fisher CJ et al (2001) c-Jun potentials the functional interaction between the amino and carboxyl termini of the androgen receptor. J Biol Chem 276:44704–44711

    Article  CAS  PubMed  Google Scholar 

  19. Wise SC, Burmeister LA, Zhou XF et al (1998) Identification of domains of c-Jun mediating androgen receptor transactivation. Oncogene 16:2001–2009

    Article  CAS  PubMed  Google Scholar 

  20. Lobaccaro JM, Poujol N, Terouanne B et al (1999) Transcriptional interferences between normal or mutant androgen receptors and the activator protein 1—dissection of the androgen receptor functional domains. Endocrinol 140:350–357

    Article  CAS  Google Scholar 

  21. Xing NZ, Chen Y, Mitchell SH, Young CYF (2001) Quercetin inhibits expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis 22:409–414

    Article  CAS  PubMed  Google Scholar 

  22. Yuan H, Pan YQ, Young CYF (2004) Overexpression of c-Jun induced by quercetin and resveratrol inhibits the expression and function of the androgen receptor in human prostate cancer cells. Cancer Lett 213:155–163. doi:10.1016/j.canlet.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  23. Yuan H, Gong AY, Young CYF (2005) Involvement of transcription factor Sp1 in quercetin-mediated inhibitory effect on the androgen receptor in human prostate cancer cells. Carcinogenesis 26:793–801. doi:10.1093/carcin/bgi021

    Article  CAS  PubMed  Google Scholar 

  24. Ren FG, Zhang SB, Mitchell SH et al (2000) Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene 19:1924–1932

    Article  CAS  PubMed  Google Scholar 

  25. Zhu W, Zhang JS, Young CYF (2001) Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis 22:1399–1403

    Article  CAS  PubMed  Google Scholar 

  26. Jiang SW, Eberhardt NL (1995) A micro-scale method to isolate DNA-binding proteins suitable for quantitative comparison of expression in levels from transfection cells. Nucleic Acids Res 23:3607–3608

    Article  CAS  PubMed  Google Scholar 

  27. Faber PW, Van Rooij HC, Schipper HJ et al (1993) Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. The role of Sp1. J Biol Chem 268:9296–9301

    CAS  PubMed  Google Scholar 

  28. Kardassis D, Papakosta P, Pardalis K, Moustakas A (1999) c-Jun transactivates the promoter of the human p21WAF1/Cip1 gene by acting as a superactivator of the ubiquitous transcription factor Sp1. J Biol Chem 274:29572–29581

    Article  CAS  PubMed  Google Scholar 

  29. Wang CH, Tsao YP, Chen HJ et al (2000) Transcriptional repression of p21WAF1/Cip1 gene by c-Jun through Sp1 site. Biochem Biophys Res Commun 270:303–310

    Article  CAS  PubMed  Google Scholar 

  30. Chen BK, Chang WC (2000) Functional interaction between c-Jun and promoter factor Sp1 in epidermal growth factor-induced gene expression of human 12(S)-lipoxygenase. Proc Natl Acad Sci USA 97:10406–10411

    Article  CAS  PubMed  Google Scholar 

  31. Wang YN, Chang WC (2003) Induction of disease-associated keratin 16 gene expression by epidermal growth factor is regulated through cooperation of transcription factor Sp1 and c-Jun. J Biol Chem 278:45848–45857. doi:10.1074/jbc.M302630200

    Article  CAS  PubMed  Google Scholar 

  32. Wu YZ, Zhang XP, Zehner ZE (2003) c-Jun and the dominant-negative mutant, TAM67, induce vimentin gene expression by interacting with the activator Sp1. Oncogene 22:8891–8901. doi:10.1038/sj.onc.1206898

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant R01 88900, the National Natural Science Foundation of China (30772594), and Shandong Scientific Technology Program (2008GG10002042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiqing Yuan or Hongxiang Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, H., Young, C.Y.F., Tian, Y. et al. Suppression of the androgen receptor function by quercetin through protein–protein interactions of Sp1, c-Jun, and the androgen receptor in human prostate cancer cells. Mol Cell Biochem 339, 253–262 (2010). https://doi.org/10.1007/s11010-010-0388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0388-7

Keywords

Navigation