Skip to main content
Log in

Sildenafil citrate concentrations not affecting oxidative phosphorylation depress H2O2 generation by rat heart mitochondria

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sildenafil citrate (Viagra) is a potent and specific inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5 (PDE5), which exhibits cardioprotective action against ischemia/reperfusion injury in intact and isolated heart. The mechanism of its cardioprotective action is not completely understood, but some results suggested that sildenafil exerts cardioprotection through the opening of mitochondrial ATP-sensitive K+ channels (mitoKATP). However, the impact of sildenafil citrate per se on isolated heart mitochondrial function is unknown. The goal of this study was to investigate the influence of the compound on mitochondrial function (bioenergetics, Ca2+-induced mitochondrial permeability transition, and hydrogen peroxide (H2O2) generation) in an attempt to correlate its known actions with effects on heart mitochondria. It was observed that sildenafil citrate concentrations of up to 50 μM did not significantly affect glutamate/malate-supported respiration in states 2, 3, 4, oligomycin-inhibited state 3, and uncoupled respiration. The respiratory control ratio (RCR), the ADP to oxygen ratio (ADP/O), the transmembrane potential (ΔΨ), the phosphorylation rate, and the membrane permeability to H+, K+ and Ca2+ were not affected either. However, sildenafil citrate decreased H2O2 generation by mitochondria respiring glutamate/malate, and also decreased the formation of superoxide radical (O •−2 ) generated in a hypoxantine/xantine oxidase system. It was concluded that sildenafil citrate concentrations of up to 50 μM do not affect either rat heart mitochondrial bioenergetics or Ca2+-induced mitochondrial permeability transition, but it depresses H2O2 generation by acting as a superoxide dismutase (SOD)-mimetic. By preventing reactive oxygen species (ROS) generation, sildenafil citrate may preserve heart mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ghofrani HA, Osterloh IH, Grimminger F (2006) Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 5:689–702

    Article  PubMed  CAS  Google Scholar 

  2. Jeremy JY, Angelini GD, Khan M et al (2000) Platelets, oxidant stress and erectile dysfunction: an hypothesis. Cardiovasc Res 46:50–54

    Article  PubMed  CAS  Google Scholar 

  3. Kukreja RC, Salloum F, Das A et al (2005) Pharmacological preconditioning with sildenafil: basic mechanisms and clinical implications. Vascul Pharmacol 42:219–232

    Article  PubMed  CAS  Google Scholar 

  4. Muzaffar S, Shukla N, Jeremy JY (2005) Nicotinamide adenine dinucleotide phosphate oxidase: a promiscuous therapeutic target for cardiovascular drugs? Trends Cardiovasc Med 15:278–282

    Article  PubMed  CAS  Google Scholar 

  5. Jeremy JY, Koupparis A, Muzaffar S et al (2005) Is the therapeutic action of sildenafil mediated partly through the inhibition of superoxide formation? BJU Int 95:930–931

    Article  PubMed  Google Scholar 

  6. Hotston MR, Jeremy JY, Bloor J et al (2007) Sildenafil inhibits the up-regulation of phosphodiesterase type 5 elicited with nicotine and tumor necrosis factor-α in cavernosal vascular smooth muscle cells: mediation by superoxide. BJU Int 99:612–618

    Article  PubMed  CAS  Google Scholar 

  7. Kukreja RC, Ockaili R, Salloum F et al (2004) Cardioprotection with phosphodiesterase-5 inhibition—a novel preconditioning strategy. J Mol Cell Cardiol 36:165–173

    Article  PubMed  CAS  Google Scholar 

  8. Kukreja RC (2006) Synergistic effects of atorvastatin and sildenafil in cardioprotection-role of NO. Cardiovasc Drugs Ther 20:5–8

    Article  PubMed  Google Scholar 

  9. Kukreja RC (2007) Cardiovascular protection with sildenafil following chronic inhibition of nitric oxide synthase. Br J Pharmacol 150:538–540

    Article  PubMed  CAS  Google Scholar 

  10. Raja SG (2006) Cardioprotection with sildenafil: implications for clinical practice. Curr Med Chem 13:3155–3164

    Article  PubMed  CAS  Google Scholar 

  11. Salloum FN, Takenoshita Y, Ockaili RA et al (2007) Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial KATP channels when administrated at reperfusion following ischemia in rabbits. J Mol Cell Cardiol 42:453–458

    Article  PubMed  CAS  Google Scholar 

  12. Das DK, Maulik N (2005) Mitochondrial function in cardiomyocytes: target for cardioprotection. Curr Opin Anaesthesiol 18:77–82

    Article  PubMed  Google Scholar 

  13. Solaini G, Harris DA (2005) Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 390:377–394

    Article  PubMed  CAS  Google Scholar 

  14. Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70:191–199

    Article  PubMed  CAS  Google Scholar 

  15. Sack MN (2006) Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res 72:210–219

    Article  PubMed  CAS  Google Scholar 

  16. Cadenas E (2004) Mitochondrial free radical production and cell signalling. Mol Aspects Med 25:17–26

    Article  PubMed  CAS  Google Scholar 

  17. Jezek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503

    Article  PubMed  CAS  Google Scholar 

  18. Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280:12944–12955

    Article  PubMed  CAS  Google Scholar 

  19. Rickwood D, Wilson MT, Darley-Usmar VM (1987) Isolation and characteristics of intact mitochondria-isolation of mitochondria from mammalian cells. In: Darley-Usmar VM, Rickwood D, Wilson MT (eds) Mitochondria: a practical approach. IRL Press, Oxford

    Google Scholar 

  20. Gornall G, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    PubMed  CAS  Google Scholar 

  21. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134

    CAS  Google Scholar 

  22. Kamo N, Muratsugu M, Hongoh R et al (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  PubMed  CAS  Google Scholar 

  23. Fernandes MAS, Custódio JBA, Santos MS et al (2006) Terandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondrion 6:176–185

    Article  PubMed  CAS  Google Scholar 

  24. Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34:227–233

    Article  PubMed  CAS  Google Scholar 

  25. Flohé L, Ötting F (1984) Superoxide dismutase assay. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York

    Google Scholar 

  26. Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in heart mitochondria. J Biol Chem 264:7826–7830

    PubMed  CAS  Google Scholar 

  27. Moriyasu T, Shigeoka S, Kishimoto K et al (2001) Identification system for sildenafil in health food. Yakugaku Zasshi 121:765–769

    Article  PubMed  CAS  Google Scholar 

  28. Abdollahi M, Bahreini-Moghadam A, Emami B et al (2003) Increasing intracellular cAMP and cGMP inhibits cadmium-induced oxidative stress in rat submandibular saliva. Comp Biochem Physiol Part C 135:331–336

    Google Scholar 

  29. Abdollahi M, Fooladian F, Emami B et al (2003) Protection by sildenafil citrate and theophyline of lead acetate-induced oxidative stress in rat submandibular gland and saliva. Hum Exp Toxicol 22:587–592

    Article  PubMed  CAS  Google Scholar 

  30. Dias-Junior CA, Souza-Costa DC, Zerbini T et al (2005) The effect of sildenafil citrate on pulmonar embolism-induced oxidative stress and pulmonar hypertension. Anesth Analg 101:115–120

    Article  PubMed  CAS  Google Scholar 

  31. Milani E, Nikfar S, Khorasani R et al (2005) Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp Biochem Physiol Part C 140:251–255

    Google Scholar 

  32. Koupparis AJ, Jeremy JY, Muzaffar S et al (2005) Sildenafil citrate inhibits the formation of superoxide and the expression of gp47 NAD[P]H oxidase induced by the thromboxane A2 mimetic, U46619, in corpus cavernosal smooth muscle cells. BJU Int 96:423–427

    Article  PubMed  CAS  Google Scholar 

  33. Shukla N, Jones R, Persad R et al (2005) Effect of sildenafil citrate and a nitric oxide donating sildenafil citrate derivative, NCX 911, on cavernosal relaxation and superoxide formation in hypercholesterolaemic rabbits. Eur J Pharmacol 517:224–231

    Article  PubMed  CAS  Google Scholar 

  34. Muzaffar S, Shukla N, Srivastava A et al (2005) Sildenafil citrate and sildenafil nitrate, NCX 911, are potent inhibitors of superoxide formation and gp91phox expression in porcine pulmonary artery endothelial cells. Br J Pharmacol 146:109–117

    Article  PubMed  CAS  Google Scholar 

  35. Du Toi EF, Rossouw E, Salie R et al (2005) Effect of sildenafil on reperfusion function, infart size and cyclic nucleotide levels in the isolated heart model. Cardiovasc Drugs Ther 19:23–31

    Article  CAS  Google Scholar 

  36. Salloum FD, Ockaili RA, Wittkamp M et al (2006) Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial KATP channels in rabbits. J Mol Cell Cardiol 40:405–411

    Article  PubMed  CAS  Google Scholar 

  37. Sesti C, Florio V, Johnson EG et al (2007) The phosphodiesterase-5 inhibitor tadalafil reduces myocardial infarct size. Int J Impot Res 19:55–61

    Article  PubMed  CAS  Google Scholar 

  38. Kukreja R, Salloum F, Xi L (2007) Anti-ischemic effects of sildenafil, vardenafil and tadalafil in heart. Int J Impot Res 19:226–227

    Article  PubMed  CAS  Google Scholar 

  39. Petrosillo G, Di Venosa N, Ruggiero F et al (2005) Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free radicals and cardioplipin. Biochim Biophys Acta 1710:78–86

    Article  PubMed  CAS  Google Scholar 

  40. Makazan Z, Saini HK, Dhalla NS (2007) Role of oxidative stress in alterations of mitochondrial function in ischemic reperfused hearts. Am J Physiol Heart Circ Physiol 292:H1986–H1994

    Article  PubMed  CAS  Google Scholar 

  41. Facundo HTF, de Paula JG, Kowaltowski AJ (2007) Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic Med 42:1039–1048

    Article  CAS  Google Scholar 

  42. Ferranti R, da Silva MM, Kowaltowski AJ (2003) Mitochondrial ATP sensitive K+ channel opening decreases reactive oxygen species generation. FEBS Lett 536:51–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Portuguese Research Council (FCT), Portugal, Environment and Life Science Institute (IAV), Institute of Marine Research (IMAR) and Center for Neuroscience and Cell Biology (CNC) of the University of Coimbra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. S. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, M.A.S., Marques, R.J.F., Vicente, J.A.F. et al. Sildenafil citrate concentrations not affecting oxidative phosphorylation depress H2O2 generation by rat heart mitochondria. Mol Cell Biochem 309, 77–85 (2008). https://doi.org/10.1007/s11010-007-9645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9645-9

Keywords

Navigation