Skip to main content
Log in

Gene expression analyses of essential catch factors in the smooth and striated adductor muscles of larval, juvenile and adult great scallop (Pecten maximus)

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The scallop adductor muscle consists of striated fibres responsible for the fast closure of the shells, and smooth fibres able to maintain tension in a prolonged state of contraction called catch. Formation of the force-bearing catch linkages has been demonstrated to be initiated by dephosphorylation of the key catch-regulating factor twitchin by a calcineurin-like phosphatase, while the involvement of other thick filament proteins is uncertain. Here we report on the development of catchability of the adductor smooth muscle in the great scallop (Pecten maximus) by analysing the spatio-temporal gene expression patterns of the myosin regulatory light chain (MLCr), twitchin, myorod and calcineurin using whole mount in situ hybridization and real-time quantitative PCR. The MLCr signal was identified in the retractor and adductor muscles of the pediveliger larvae, and the juvenile and adult scallop displayed abundant mRNA levels of MLCr in the smooth and striated adductor muscles. Twitchin was mainly expressed in the smooth adductor muscle during metamorphosis, whereas the adult striated adductor muscle contained seven-folds higher twitchin mRNA levels compared to the smooth portion. Calcineurin expression predominated in the gonads and in the smooth adductor, and five-folds higher mRNA levels were measured in the smooth than in the striated fibres at the adult stage. In contrast to the other genes examined, the expression of myorod was confined to the smooth adductor muscle suggesting that myorod plays a permissive role in the molluscan catch muscles, which are first required at the vulnerable settlement stage as a component of the predator defence system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen Ø, Dahle SW, van Nes S, Bardal T, Tooming-Klunderud A, Kjørsvik E, Galloway TF (2009) Differential spatio-temporal expression and functional diversification of the myogenic regulatory factors MyoD1 and MyoD2 in Atlantic halibut (Hippoglossus hippoglossus). Comp Biochem Physiol B Biochem Mol Biol. doi:10.1016/j.j.cbpb.2009.05.009

  • Bassel-Duby R, Olson EN (2003) Role of calcineurin in striated muscle: development, adaptation, and disease. Biochem Biophys Res Commun 311:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Beninger PG, Le Pennec M (2006) Structure and functions in scallops. In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture, 2nd edn. Elsevier, Amsterdam, pp 123–227

    Google Scholar 

  • Boutet I, Moraga D, Marinovic L, Obrreque J, Chavez-Crooker P (2008) Characterization of reproduction-specific genes in a marine bivalve mollusc: influence of maturation stage and sex on mRNA expression. Gene 407:130–138

    Article  CAS  PubMed  Google Scholar 

  • Castellani L, Cohen C (1992) A calcineurin-like phosphatase is required for catch contraction. FEBS 309:321–326

    Article  CAS  Google Scholar 

  • Chantler PD (2006) Scallop adductor muscles: Structure and function. In: Shumway SE, Parsons GJ (eds) Scallops: Biology, ecology and aquaculture, 2nd edn. Elsevier, Amsterdam, pp 229–316

    Google Scholar 

  • Cragg SM (1985) The adductor and retractor muscles of the veliger of Pecten maximus (L.) (Bivalvia). J moll Stud 51:276–283

    Google Scholar 

  • Dyachuk V, Odintsova N (2009) Development of the larval muscle system in the mussel Mytilus trossulus (Mollusca, Bivalvia). Develop Growth Differ 51:69–79

    CAS  Google Scholar 

  • Friday BB, Horsely V, Pavlath GK (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149:657–665

    Article  CAS  PubMed  Google Scholar 

  • Funabara D, Kanoh S, Siegman MJ, Butler TM, Hartshorne DJ, Watabe S (2005) Twitchin as a regulator of catch contraction in molluscan smooth muscle. J Muscle Res Cell Motil 26:455–460. doi:10.1007/s10974-005-9029-2

    Article  CAS  PubMed  Google Scholar 

  • Funabara D, Hamamoto C, Yamamoto K, Inoue A, Ueda M, Osawa R, Kanoh S, Hartshorne DJ, Suzuki S, Watabe S (2007) Unphosphorylated twitchin forms a complex with actin and myosin that may contribute to tension maintenance in catch. J Exp Biol 210:4399–4410. doi:10.1242/jeb.008722

    Article  CAS  PubMed  Google Scholar 

  • Gajewski KM, Wang J, Schulz RA (2006) Calcineurin function is required for myofilament formation and troponin I isoform transition in Drosophila indirect flight muscle. Dev Biol 289:17–29

    Article  CAS  PubMed  Google Scholar 

  • Galler S (2008) Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge. J Muscle Res Cell Motil 29:73–99

    Article  CAS  PubMed  Google Scholar 

  • Goodwin EB, Szent-Györgyi AG, Leinwand LA (1987) Cloning and characterization of the scallop essential and regulatory myosin light chain cDNAs. J Biol Chem 262:11052–11056

    CAS  PubMed  Google Scholar 

  • Guerini D (1997) Calcineurin: not just a simple protein phosphatase. Biochem Biophys Res Comm 235:271–275

    Article  CAS  PubMed  Google Scholar 

  • Janes DP, Patel H, Chantler PD (2000) Primary structure of myosin from the striated adductor muscle of the Atlantic scallop, Pecten maximus, and expression of the regulatory domain. J Muscle Res Cell Motil 21:415–422

    Article  CAS  PubMed  Google Scholar 

  • Johnston IA (2006) Fish Muscle Research Group- EST database of Pecten maximus. http://138.251.161.20/~manager./Pecten/King%20Sacllop%20cDNA%20library/wwwPartiGene.html Accessed 1 Dec 2006

  • Kendrick-Jones J, Jakes R (1977) Myosin-linked regulation- a chemical approach. In: Rieker G, Weber A, Goodwin J (eds) International Symposium on Myocardial Failure. Springer Verlag, Berlin, pp 28–40

    Google Scholar 

  • Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Morita F (1981) Smooth muscle of scallop adductor contains at least two kinds of myosin. J Biochem 90:673–681

    CAS  PubMed  Google Scholar 

  • Le Pennec M, Paugam A, Le Pennec G (2003) The pelagic life of the pectinid Pecten maximus—a review. ICES J Mar Sci 60:211–223

    Article  Google Scholar 

  • Li C, Huang J, Li S, Fan W, Hu Y, Wang Y, Zhy F, Xiee L, Zhang R (2009) Cloning, characterization and immunolocalization of two subunits of calcineurin from pearl oyster (Pinctada fucata). Comp Biochem Physiol B 153:43–53

    Article  PubMed  Google Scholar 

  • Magnesen T, Bergh Ø, Christophersen G (2006) Yields of great scallop, Pecten maximus, in a commercial flow-through rearing system in Norway. Aquaculture Intern 14:377–394

    Article  Google Scholar 

  • Miyanishi T, Maita T, Morita F, Kondo S, Matsuda G (1985) Amino acid sequences of the two kinds of regulatory light chains of adductor smooth muscle myosin from Patinopecten yessoensis. J Biochem 97:541–551

    CAS  PubMed  Google Scholar 

  • Odintsova NA, Dyachuk VA, Karpenko AA (2007) Development of the muscle system and contractile activity in the mussel Mytilis trossulus (Mollusca, Bivalvia). Russian J Develop Biol 38:235–240 (in Russian)

    CAS  Google Scholar 

  • Probst WC, Cropper EC, Heierhorst J, Hooper SL, Jaffe H, Vilim F, Beushausen S, Kupfermann I, Weiss KR (1994) cAMP-dependent phosphorylation of Aplysia twitchin may mediate modulation of muscle contractions by neuropeptide cotransmitters. Proc Natl Acad Sci USA 91:8487–8491

    Article  CAS  PubMed  Google Scholar 

  • Rousseau M, Plouguerne E, Wan G, Wan R, Lopez E, Fouchereau-Peron M (2003) Biomineralisation markers during a phase of active growth in Pinctada margaritifera Comp Biochem Physiol A 135:271–278

    CAS  Google Scholar 

  • Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    CAS  PubMed  Google Scholar 

  • Shelud’ko NS, Matusovsky OS, Permyakova TV, Matusovskaya GG (2007) “Twitchin-actin linkage hypothesis” for the catch mechanism in molluscan muscles: evidence that twitchin interacts with myosin, myorod, and paramyosin core and affects properties of actomyosin. Arch Biochem Biophys 466:125–135

    Article  PubMed  Google Scholar 

  • Siegman MJ, Mooers SU, Li C, Narayan S, Trinkle-Mulcahy L, Watabe S, Hartshorne DJ, Butler TM (1997) Phosphorylation of a high molecular weight (approximately 600 kDa) protein regulates catch in invertebrate smooth muscle. J Muscle Res Cell Motil 18:655–670

    Article  CAS  PubMed  Google Scholar 

  • Siegman MJ, Funabara D, Kinoshita S, Watabe S, Hartshorne DJ, Butler TM (1998) Phosphorylation of a twitchin-related protein controls catch and calcium sensitivity of force production in invertebrate smooth muscle. Proc Natl Acad Sci USA 28:5383–5388

    Article  Google Scholar 

  • Sobieszek A, Matusovsky OS, Permyakova TV, Sarg B, Lindner H, Shelud’ko NS (2006) Phosphorylation of myorod (catchin) by kinases tightly associated to molluscan and vertebrate smooth muscle myosins. Arch Biochem Biophys 454:197–205. doi:10.1016/j.abb.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  • Szent-Györgyi AG, Chantler PD (1994) Control of contraction by calcium binding to myosin. In: Engel AG, Franzini-Armstrong C (eds) Myology, Vol. 1, 2nd edn. McGraw-Hill, Inc., New York, pp 506–528

    Google Scholar 

  • Tsutsui Y, Yoshio M, Oiwa K, Yamada A (2005) Twitchin purified from molluscan catch muscles regulates interactions between actin and myosin filaments at rest in a phosphorylation-dependent manner. J Muscle Res Cell Motil 26:416–465. doi:10.1007/s10974-005-9030-9

    Google Scholar 

  • Tsutsui Y, Yoshio M, Oiwa K, Yamada A (2007) Striated muscle twitchin of bivalves has “catchability”, the ability to bind thick filaments tightly to thin filaments, representing the catch state. J Mol Biol 365:325–332. doi:10.1016/j.mb.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  • Uryu M, Nakatomi A, Watanabe M, Hatsuse R, Yazawa M (2000) Molecular cloning of cDNA encoding two subunits of calcineurin from scallop testis: demonstration of stage-specific expression during maturation of the testis. J Biochem 127:739–746

    CAS  PubMed  Google Scholar 

  • Vibert P, Edelstein SM, Castellani L, Eliott BW Jr (1993) Mini-titins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity. J Muscle Res Cell Motil 14:598–607

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T, Szent-Györgyi AG (1981) An immunological approach to myosin light-chain function in thick filament linked regulation. 1. Characterization, specificity, and cross-reactivity of anti-scallop myosin heavy- and light-chain antibodies by competitive, solid-phase radioimmunoassay. Biochemistry 20:1176–1187

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Györgyi AG, Cohen C (2000) Structure of the regulatory domain of scallop myosin at 2.8 Å resolution. Nature 368:306–312. doi:10.1038/368306a0

    Article  Google Scholar 

  • Yamada A, Yoshio M, Oiwa K, Nyitray L (2000) Catchin, a novel protein in molluscan catch muscles, is produced by alternative splicing from the myosin heavy chain gene. J Mol Biol 295:169–178

    Article  CAS  PubMed  Google Scholar 

  • Yamada A, Yoshio M, Kojima H, Oiwa K (2001) An in vitro assay reveals essential protein components for the “catch” state of invertebrate smooth muscle. Proc Natl Acad Sci USA 98:6635–6640. doi:10.1073/pnas.111585098

    Article  CAS  PubMed  Google Scholar 

  • Yamada A, Yoshio M, Nakamura A, Kohama K, Oiwa K (2004) Protein phosphatase 2B dephosphorylates twitchin, initiating the catch state of invertebrate smooth muscle. J Biol Chem 279:40762–40768

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øivind Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, Ø., Torgersen, J.S., Pagander, H.H. et al. Gene expression analyses of essential catch factors in the smooth and striated adductor muscles of larval, juvenile and adult great scallop (Pecten maximus). J Muscle Res Cell Motil 30, 233–242 (2009). https://doi.org/10.1007/s10974-009-9192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-009-9192-y

Keywords

Navigation