Skip to main content
Log in

Mini-titins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Invertebrate mini-titins are members of a class of myosin-binding proteins belonging to the immunoglobulin superfamily that may have structural and/or regulatory properties. We have isolated mini-titins from three molluscan sources: the striated and smooth adductor muscles of the scallop, and the smooth catch muscles of the mussel. Electron microscopy reveals flexible rod-like molecules about 0.2 μm long and 30 Å wide with a distinctive polarity. Antibodies to scallop mini-titin label the A-band and especially the A/I junction of scallop striated muscle myofibrils by indirect immunofluorescence and immuno-electron microscopy. This antibody crossreacts with mini-titins in scallop smooth and Mytilus catch muscles, as well as with proteins in striated muscles from Limulus, Lethocerus (asynchronous flight muscle), and crayfish. It labels the A/I junction (I-region in Lethocerus) in these striated muscles as well as in chicken skeletal muscle. Antibodies to the repetitive immunoglobulin-like regions and also to the kinase domain of nematode twitchin crossreact with scallop mini-titin and label the A-band of scallop myofibrils. Electron microscopy of single molecules shows that antibodies to twitchin kinase bind to scallop mini-titin near one end of the molecule, suggesting how the scallop structure might be aligned with the sequence of nematode twitchin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AYME-SOUTHGATE, A., VIGOREAUX, J., BENIAN, G. & PARDUE, M. L. (1991) Drosophila has a twitchin/titin-related gene that appears to encode projectin. Proc. Natl. Acad. Sci. USA 88, 7973–7.

    Google Scholar 

  • BENIAN, G. M., KIFF, J. E., NECKELMANN, N., MOERMAN, D. G. & WATERSTON, R. H. (1989) Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature 342, 45–50.

    Google Scholar 

  • BENIAN G. M., L'HERNAULT S. W., FOX L. A., TUCKER C. Y. & SALE W. S. (1991) Structure of twitchin: an unusually large sarcomeric protein of C. elegans. J. Cell Biol. 115, 29a.

  • EILERTSEN, K. J. & KELLER, T. C. S. (1992) Identification and characterization of two huge protein components of the brush border cytoskeleton: evidence for a cellular isoform of titin. J. Cell Biol. 119, 549–57.

    Google Scholar 

  • EINHEBER, S. & FISCHMAN, D. A. (1990) Isolation and characterization of a cDNA clone encoding avian skeletal muscle C-protein: an intracellular member of the immunoglobulin superfamily. Proc. Natl. Acad. Sci. USA 87, 2157–61.

    Google Scholar 

  • ELLIOTT, B. W., CASTELLANI, L., EDELSTEIN, S. M. & VIBERT, P. (1991) Isolation of an invertebrate muscle filamin. J. Cell Biol. 115, 328a.

  • EPSTEIN, H. F. & FISCHMAN, D. A. (1991) Molecular analysis of protein assembly in muscle development. Science 251, 1039–44.

    Google Scholar 

  • FISCHMAN, D. A., VAUGHAN, K. T., WEBER, F. E., OKAGAKI, T. & REINACH, F. (1992) Sequence organization and domain analysis of the human and chicken skeletal muscle myosin-binding protein (MyBP) family. Molec. Biol. Cell 3, 191a.

  • FULTON, A. B. & ISAACS, W. B. (1991) Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis. BioEssays 13, 157–61.

    Google Scholar 

  • FYRBERG, C. C., LABEIT, S., BULLARD, B., LEONARD, K. & FYRBERG, E. (1992) Drosophila projectin: relatedness to titin and twitchin and correlation with lethal(4)102CDa and bent-Dominant mutants. Proc. Roy. Soc. Lond. Ser. B 249, 33–40.

    Google Scholar 

  • HILL, C. & WEBER, K. (1986) Monoclonal antibodies distinguish titins from heart and skeletal muscle. J. Cell Biol. 102, 1099–108.

    Google Scholar 

  • HOLDEN, H. M., ITO, M., HARTSHORNE, D. J. & RAYMENT, I. (1992) X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 Å resolution. J. Mol. Biol. 227, 840–51.

    Google Scholar 

  • HU, D. H., MATSUNO, A., TERAKADO, K., MATSUURA, T., KIMURA, S. & MARUYAMA, K. (1990) Projectin is an invertebrate connectin (titin): Isolation from crayfish claw muscle and localization in crayfish claw muscle and insect flight muscle. J. Muscle Res. Cell Motil. 11, 497–511.

    Google Scholar 

  • KNIGHTON, D. R., ZHENG, J., TEN EYCK, L. F., ASHFORD, V. A., XUONG, N.-H., TAYLOR, S. S. & SOWADSKI, J. M. (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 345, 407–14.

    Google Scholar 

  • LABEIT, S., BARLOW, D. P., GAUTEL, M., GIBSON, T., HOLT, J., HSIEH, C.-L., FRANCKE, U., LEONARD, K., WARDALE, J., WHITING, A. & TRINICK, J. (1990) A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 345, 273–6.

    Google Scholar 

  • LABEIT, S., GAUTEL, M., LAKEY, A. & TRINICK, J. (1992) Towards a molecular understanding of titin. EMBO J. 11, 1711–16.

    Google Scholar 

  • LAKEY, A., FERGUSON, C., LABEIT, S., REEDY, M., LARKINS, A., BUTCHER, G., LEONARD, K. & BULLARD, B. (1990) Identification and localization of high molecular weight proteins in insect flight and leg muscle. EMBO J. 9, 3459–67.

    Google Scholar 

  • LEAHY, D. J., HENDRICKSON, W. A., AUKHIL, I. & ERICKSON, H. P. (1992) Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258, 987–91.

    Google Scholar 

  • MAROTO, M., VINOS, J., MARCO, R. & CERVERA, M. (1992) Autophosphorylating protein kinase activity in titin-like arthropod projectin. J. Mol. Biol. 224, 287–91.

    Google Scholar 

  • MOERMAN, D. G., BENIAN, G. B., BARSTEAD, R. J., SCHRIEFER, L. A. & WATERSTON, R. H. (1988) Identification and intracellular localization of the unc-22 gene product of Caenorhabditis elegans. Genes and Development 2, 93–105.

    Google Scholar 

  • NAVE, R. & WEBER, K. (1990) A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: Purification and molecular characterization of invertebrate mini-titin. J. Cell Sci. 95, 535–44.

    Google Scholar 

  • NAVE, R., FURST, D., VINKEMEIER, U. & WEBER, K. (1991) Purification and physical properties of nematode mini-titins and their relation to twitchin. J. Cell Sci. 98, 491–6.

    Google Scholar 

  • OLSON, N. J., PEARSON, R. B., NEEDLEMAN, D., HURWITZ, M. Y., KEMP, B. E. & MEANS, A. R. (1990) Regulatory and structural motifs of chicken gizzard myosin light chain kinase. Proc. Natl. Acad. Sci. USA 87, 2284–8.

    Google Scholar 

  • PRICE M. G., TAPHOUSE C. R. & GOMER R. H. (1991) Desmin-helical motifs make skelemin unique in the new family of cytoplasmic myosin-associated proteins with Ig superfamily C2 and fibronectin type III motifs. J. Cell Biol. 115, 29a.

  • PRICE M. G., CHEN W. & GOMER R. H. (1992) Skelemin, a myofibril/cytoskeleton anchorage protein, binds to intermediate filaments of non-muscle cells. Molec. Biol. Cell 3, 191a.

  • SAIDE, J. D. (1981) Identification of a connecting filament protein in insect fibrillar flight muscle. J. Mol. Biol. 153, 661–79.

    Google Scholar 

  • SAIDE, J. D., CHIN-BOW, S., HOGAN-SHELDON, J., BUSQUETS-TURNER, L., VIGOREAUX, J. O., VALGEIRSDOTTIR, K. & PARDUE, M. L. (1989) Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster. J. Cell Biol. 109, 2157–67.

    Google Scholar 

  • SAIDE, J. D., CHIN-BOW, S., HOGAN-SHELDON, J. & BUSQUETS-TURNER, L. (1990) Z-band proteins in the flight and leg muscles of the honeybee. J. Muscle Res. Cell Motil. 11, 125–36.

    Google Scholar 

  • TRINICK, J. (1991) Elastic filaments and giant proteins in muscle. Curr. Opin. Cell Biol. 3, 112–19.

    Google Scholar 

  • TRINICK, J. (1992) Understanding the functions of titin and nebulin. FEBS Lett. 307, 44–8.

    Google Scholar 

  • TRINICK, J., KNIGHT, P. & WHITING, A. (1984) Purification and properties of native titin. J. Mol. Biol. 180, 331–56.

    Google Scholar 

  • VALENZUELA, M. R. L., LEI, J., TANG, X., DELAGARZA, D. & BENIAN, G. M. (1992) Studies on the structure and activity of twitchin and a new member of the twitchin-titin family in the muscle of C. elegans. Molec. Biol. Cell 3, 46a.

  • VIBERT, P. & CASTELLANI, L. (1989) Substructure and accessory proteins in scallop myosin filaments. J. Cell Biol. 109, 539–47.

    Google Scholar 

  • VIBERT, P., ELLIOTT, B. W., CASTELLANI, L. & EDELSTEIN, S. M. (1992) Mini-titins from striated and smooth molluscan muscles. Biophys. J. 61, A28.

  • WANG, K. & WRIGHT, J. (1988) Architecture of the sarcomere matrix of skeletal muscle: Immunoelectron microscope evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J. Cell Biol. 107, 2199–212.

    Google Scholar 

  • WHITING, A., WARDALE, J. & TRINICK, J. (1989) Does titin regulate the length of muscle thick filaments? J. Mol. Biol. 205, 263–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vibert, P., Edelstein, S.M., Castellani, L. et al. Mini-titins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity. J Muscle Res Cell Motil 14, 598–607 (1993). https://doi.org/10.1007/BF00141557

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00141557

Keywords

Navigation