Skip to main content
Log in

Thermal, structural, morphological and bioactive characterization of acid and neutral modified loquat (Eriobotrya japonica lindl.) seed starch and its by-products

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Extraction methods are determinant in technological properties of non-conventional starches. Different steeping procedures are capable of modifying the starch regarding its proximal composition and its morphological thermal and rheological profile, also changing the residues produced during the extractions. Thus, this study aimed to characterize the modified loquat seed starch (LSS) by neutral (NS—neutral starch) and acid (AS—acid starch) steeping and their by-products (AEB—acid extraction by-product) and (NEB—neutral extraction by-product). This study was based on data from thermal analysis, viscosity profile, antioxidant properties and determination of structural and morphological characteristics. Regardless of the extraction method applied, LSS presented a C-type crystalline structure. The AS resulted in a less yellowish starch, with low protein (1.18%), lipid (0.34%) and ash content (0.15%). Compared with the NS, the AS provided more thermal stability. Using differential scanning calorimetry (DSC) and Rapid Visco Analyzer (RVA), was verified a low gelatinization temperature (60.53–60.55 °C) and a higher tendency to gelatinization of the starches. Furthermore, higher antioxidant capacity was observed for NS (600.20 mg GAE/100 g). Moreover, all by-products presented higher content of fiber (65.82%) and protein (8.92%), verified by their proximal composition and Scanning Electron Microscopy. The thermogravimetric analysis showed a low thermal stability for by-products. These findings demonstrate that all samples obtained from loquat seed showed potential characteristics for industrial usage in new processes. Their by-products can also be associated with the decreasing of agro-industrial waste and can be used in food formulations or biodegradable films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

5. References

  1. Rocha TS, Cunha VAG, Jane JL, Franco CML. Structural characterization of peruvian carrot (Arracacia xanthorrhiza) starch and the effect of annealing on its semicrystalline structure. J Agric Food Chem. 2011;59(8):4208–16.

    Article  CAS  PubMed  Google Scholar 

  2. Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym. 2001;45(3):253–67.

    Article  CAS  Google Scholar 

  3. Alcázar-alay SC, Meireles MAA. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol. 2015;35(2):215–36.

    Article  Google Scholar 

  4. Abbas KA, Khalil KS, Hussin MAS. Modified starches and their usages in selected food products: a review study. J Agric Sci. 2014;2(2):90–100.

    Google Scholar 

  5. Haq F, Yua H, Wang L, Teng L, Haroon M, Khan URU, Mehmood S, Bilal-Ul-Amin URS, Khan A, Nazir A. Advances in chemical modifications of starches and their applications. Carbohydr Res. 2019;476:12–35.

    Article  CAS  PubMed  Google Scholar 

  6. Oksman K, Skrifvars M, Selin J. Natural fibres as reinforcement in polylactic acid (PLA ) composites. Comp Sci Technol. 2003;63:1317–24.

    Article  CAS  Google Scholar 

  7. Teixeira GL, Ávila S, Hornung PS, Barbi RCT, Ribani RH. Sapucaia nut (Lecythis pisonis Cambess.) flour as a new industrial ingredient: physicochemical, thermal, and functional properties. Food Res Int. 2018;109:572–82.

    Article  CAS  PubMed  Google Scholar 

  8. Maniglia BC, Tapia-Blácido DR. Isolation and characterization of starch from babassu mesocarp. Food Hydrocoll. 2016;55:47–55.

    Article  CAS  Google Scholar 

  9. Bet CD, Oliveira CS, Colman TAD, Bisinella RZB, Beninca C, Lacerda LG, et al. Aqueous extraction of organic amaranth starch and their by-products. J Therm Anal Calorim. 2019;7:2733–49.

    Article  CAS  Google Scholar 

  10. Correia PR, Beirão-Da-Costa ML. Chestnut and acorn starch properties affected by isolation methods. Starch. 2010;62(8):421–8.

    Article  CAS  Google Scholar 

  11. Ferraz CA, Fontes RLS, Fontes-Sant’Ana GC, Calado V, López EO, Rocha-Leão MHM. Extraction, modification, and chemical, thermal and morphological characterization of starch from the agro-industrial residue of mango (Mangifera indica L.) var Ubá. Starch. 2019;71(1–2):1800023.

    Article  CAS  Google Scholar 

  12. Villarreal ME, Ribotta PD, Iturriaga LB. Comparing methods for extracting amaranthus starch and the properties of the isolated starches. LWT Food Sci Technol. 2013;51:441–7.

    Article  CAS  Google Scholar 

  13. Barbi RCT, Teixeira GL, Hornung PS, Ávila S, Hoffmann-Ribani R. Eriobotrya japonica seed as a new source of starch: assessment of phenolic compounds, antioxidant activity, thermal, rheological and morphological properties. Food Hydrocoll. 2018;77:646–58.

    Article  CAS  Google Scholar 

  14. Lopes AMM, Sanches AG, de Souza KO, Oliveira SE. Loquat/Nispero - Eriobotrya japonica Lindl. In: Rodrigues S, Silva EO, Brito ES, editors. Exotic Fruits Reference Guide. London: Academic Press; 2018. pp. 285–92.

  15. Pio R, DallOrto FAC, Chagas EA, Barbosa W. Aspectos técnicos do cultivo de nêsperas. Divisão de Bibl Doc. 2007;1(1):053–1056.

    Google Scholar 

  16. Caballero P, Fernández MA. Loquat, production and market. Options Mediterr. 2002;58:11–20.

    Google Scholar 

  17. Ahmad G, Gull A, Gupta P, Priyanka K, Sivanand C. Antioxidants in fruits: properties and health benefits. New York: Springer; 2020. p. 577–92.

    Google Scholar 

  18. Hornung PS, Barbi RCT, Teixeira GL, Ávila S, da Silva FLDA, Lazzarotto M. Brazilian Amazon white yam (Dioscorea sp) starch: Impact on functional properties due to chemical and physical modifications processes. J Therm Anal Calorim. 2018;134(3):2075–88.

    Article  CAS  Google Scholar 

  19. AOAC. Ofcial methods of analysis. 17th ed. Washington, DC: Association of Ofcial Analytical Chemists; 2000.

    Google Scholar 

  20. Martínez C, Cuevas F. Evaluación de la calidad culinaria y molinera del arroz. 3rd ed. CIAT: Centro Internacional de Agricultura Tropical; 1989.

    Google Scholar 

  21. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enzymol. 1974;1998(299):152–78.

    Google Scholar 

  22. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25–30.

    Article  CAS  Google Scholar 

  23. Benzie I, Strain J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidan power”: the FRAP assay analytical biochemistry. Anal Biochem. 1996;239:70–6.

    Article  CAS  PubMed  Google Scholar 

  24. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation descolorization assay. Free Rad Bio Med. 1999;26:1231–7.

    Article  CAS  Google Scholar 

  25. Cai YZ, Corke H. Production and properties of 2,3-butanediol. J Sens Nutr Qual food. 2000;65(3600):1248–52.

    CAS  Google Scholar 

  26. Cano-chauca M, Stringheta PC, Ramos AM, Cal-vidal J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov Food Sci Emerg Technol. 2005;6:420–8.

    Article  CAS  Google Scholar 

  27. Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng. 2006;75(1):27–35.

    Article  CAS  Google Scholar 

  28. Hornung PS, Ávila S, Lazzarotto M, da Silveira Lazzarotto SR, de Siqueira GLA, Schnitzler E. Enhancement of the functional properties of Dioscoreaceas native starches: Mixture as a green modification process. Thermochim Acta. 2017;649:31–40.

    Article  CAS  Google Scholar 

  29. ICC, International Cereals Chemists. Rapid Pasting Method using the Newport Rapid Visco Analyser. In: Method for using the Rapid Visco Analyser as Rapid pasting method for determining pasting properties of cereals, starches prepared from cereals and other starches. 1996. http://old.icc.or.at/standard_methods/162 of subordinate document. Accessed 15 Jan 2019.

  30. Ravi R, Sai Manohar R, Haridas RP. Use of Rapid Visco Analyser (RVA) for measuring the pasting characteristics of wheat flour as influenced by additives. J Sci Food Agric. 1999;79(12):1571–6.

    Article  CAS  Google Scholar 

  31. ANVISA. Technical Regulation for Cereals, Starch, Flour and Bran Products of the National Health Surveillance Agency. Brasília: ANVISA-RDC nº 263, 2005.

  32. Yuan RC, Thompson DB, Boyer CD. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines. Cereal Chem. 1993;70(1):81–9.

    CAS  Google Scholar 

  33. de Castro DS, dos Santos MI, de Melo Silva LM, Lima JP, da Silva WP, Gomes JP. Isolation and characterization of starch from pitomba endocarp. Food Res Int. 2019;124:181–7.

    Article  PubMed  CAS  Google Scholar 

  34. Pérez Sira EE, Amaiz ML. A laboratory scale method for isolation of starch from pigmented sorghum. J Food Eng. 2004;64:515–9.

    Article  Google Scholar 

  35. Gonçalves PM, Noreña CPZ, da Silveira NP, Brandelli A. Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. Food Sci Technol. 2014;58(1):21–7.

    Google Scholar 

  36. Henríquez C, Escobar B, Figuerola F, Chiffelle I, Speisky H, Estévez AM. Characterization of Piñon seed (Araucaria araucana (Mol) K. Koch) and the isolated starch from the seed. Food Chem. 2008;107(2):592–601.

    Article  CAS  Google Scholar 

  37. Parkin KL. Influência ambiental na atividade enzimática. In: Damodaran S, Parkin KL, Fennema OR, editors. Química de alimentos de Fennema. Porto Alegre: Artmed press p; 2010. p. 308–26.

    Google Scholar 

  38. Gull J, Sultana B, Anwar F, Naseer R, Ashraf M, Ashrafuzzaman M. Variation in antioxidant attributes at three ripening stages of guava (Psidium guajava L.) fruit from different geographical regions of Pakistan. Molecules. 2012;17(3):3165–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Denardin CC, da Silva LP. Estrutura dos grânulos de amido e sua relação com propriedades físico-químicas. Ciênc Rural. 2009;39(3):945–54.

    Article  CAS  Google Scholar 

  40. Nakao M, Ogura Y, Satake S, Ito I. Usefulness of soluble dietary fiber for the treatment of diarrhea during enteral nutrition in elderly patients. Nutrition. 2002;9007(01):35–9.

    Article  Google Scholar 

  41. Waterschoot J, Gomand SV, Fierens E, Delcour JA. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch. 2015;67(1–2):14–29.

    Article  CAS  Google Scholar 

  42. Cheetham NWH, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohy Poly. 1998;36:277–84.

    Article  CAS  Google Scholar 

  43. Thomaz L, Ito VC, Malucelli LC, da Silva MACF, Demiate IM, Bet CD, Lacerda LG. Effects of dual modification on thermal, structural and pasting properties of taro (Colocasia esculenta L) starch. J Therm Anal Calorim. 2019;139:3123–32.

    Article  CAS  Google Scholar 

  44. Bisinella RZB, Beninca C, Bet CD, Oliveira CS, Demiate IM, Schnitzler E. Thermal, structural, and morphological characterisation of organic rice starch after physical treatment. J Therm Anal Calorim. 2021;1:1–9.

    Google Scholar 

  45. Cotos MRC, Salas IA. Aislamiento y caracterización parcial del almidón nativo de Amaranthus caudatus Linneo. Soc Química Del Perú. 2004;70:48–54.

    CAS  Google Scholar 

  46. Kong X, Bao J, Corke H. Physical properties of Amaranthus starch. Food Chem. 2009;113:371–6.

    Article  CAS  Google Scholar 

  47. Beninca C, Demiate IM, Lacerda LG, Filho MASC, Ionashiro M, Schnitzler E. Thermal behavior of corn starch granules modified by acid treatment at 30 and 50 °C. Eclet Quim. 2008;33:13–8.

    Article  CAS  Google Scholar 

  48. Noda T, Takahata Y, Sato T, Suda I, Morishita T, Ishiguro K. Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydr Polym. 1998;37(2):153–8.

    Article  CAS  Google Scholar 

  49. Jayakody L, Hoover R. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins – a review. Carbohydr Polym. 2008;74(3):691–703.

    Article  CAS  Google Scholar 

  50. Campbell MR, Li J, Berke TG, Glover DV. Variation of starch granule size in tropcial maize germ plasm. Cereal Chem. 1996;75:536–8.

    Google Scholar 

  51. Hoover R. The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Crit Rev Food Sci Nutr. 2010;50(9):835–47.

    Article  CAS  PubMed  Google Scholar 

  52. Jambrak AR, Herceg Z, Subaríc D, Babíc J, Brncíc M, Brnčić SR, Bosiljkov T, Cvek D, Tripalo B, Gelo J. Ultrasound efect on physical properties of corn starch. Carbohydr Polym. 2010;79(1):91–100.

    Article  CAS  Google Scholar 

  53. Oliveira CS, Andrade MMP, Colman TAD, Costa FJOG, Schnitzler E. Thermal, structural and rheological behaviour of native and modifed waxy corn starch with hydrochloric acid at diferent temperatures. J Therm Anal Calorim. 2014;115:13–8.

    Article  CAS  Google Scholar 

  54. Corradini E, Imam SH, Agnelli JAM, Mattoso LHC. Effect of coconut, sisal and jute fibers on the properties of starch/gluten/glycerol matrix. J Polym Environ. 2009;17:1–9.

    Article  CAS  Google Scholar 

  55. Micić DM, Ostojić SB, Simonović MB, Pezo LL, Simonović BR. Thermal behavior of raspberry and blackberry seed flours and oils. Thermochim Acta. 2015;2015(617):21–7.

    Article  CAS  Google Scholar 

  56. Bhat FM, Riar CS. Effect of chemical composition, granule structure and crystalline form of pigmented rice starches on their functional characteristics. Food Chem. 2019;297:124984.

    Article  CAS  PubMed  Google Scholar 

  57. Deffenbaugh LB, Walker CE. Use of the rapid-visco-analyzer to measure starch pasting properties part I: effect of sugars. Starch. 1989;41(12):461–7.

    Article  CAS  Google Scholar 

  58. Falade KO, Christopher AS. Physical, functional, pasting and thermal properties of flours and starches of six Nigerian rice cultivars. Food Hydrocoll. 2015;44:478–90.

    Article  CAS  Google Scholar 

  59. Ikeda M, Carvalho CWP, Helm CV, De Azeredo HMC, De Gogoy RCB, Ribani RH. Influence of brazilian pine seed flour addition on rheological, chemical and sensory properties of gluten-free rice flour cakes. Cienc Rural. 2018;48(6):1–10.

    Article  CAS  Google Scholar 

  60. Sandoval Gordillo CA, Ayala Valencia G, Vargas Zapata RA, Agudelo Henao AC. Physicochemical characterization of arrowroot starch (Maranta arundinacea Linn) and Glycerol/Arrowroot Starch Membranes. Int J Food Eng. 2014;10(4):727–35.

    Article  CAS  Google Scholar 

  61. Hasanvand E, Fathi M, Bassiri A, Javanmard M, Abbaszadeh R. Novel starch based nanocarrier for Vitamin D fortification of milk: production and characterization. Food Bioprod Process. 2015;96:264–77.

    Article  CAS  Google Scholar 

  62. Rahim A, Siswo GH, Rahman NB, Hali SA. Structure and functional properties of arenga starch by acetylation with different concentrations of acetic anhydride. Asian J Sci Res. 2019;12(2):220–8.

    Article  CAS  Google Scholar 

  63. Ramirez MGL, Garcia S. Chemical and mechanical evaluation of bio-composites based on thermoplastic starch and wood particles prepared by thermal compression. BioResources. 2014;9:2960–74.

    Google Scholar 

  64. Biliaderis CG, Tonogai JR. Influence of lipids on the thermal and mechanical properties of concentrated starch gels. J Agric Food Chem. 1991;39:833–40.

    Article  CAS  Google Scholar 

  65. El-Hamshary H, El-Newehy MH, Al-Deyab SS. Oxidation of phenol by hydrogen peroxide catalyzed by metal-containing poly(amidoxime) grafted starch. Molecules. 2011;16(12):9900–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Warren FJ, Gidley MJ, Flanagan BM. Infrared spectroscopy as a tool to characterise starch ordered structure - a joint FTIR-ATR, NMR, XRD and DSC study. Carbohyd Polym. 2016;139:35–42.

    Article  CAS  Google Scholar 

  67. Teixeira GL, Ávila S, Hornung PS, Cristina R, Barbi T, Ho R. Sapucaia nut (Lecythis pisonis Cambess.) flour as a new industrial ingredient: physicochemical, thermal, and functional properties. Food Res Int. 2018;109:572–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from CAPES (Coordination for the Improvement of Higher Education Personnel) granted to B. P. Costa (Grant number 88882.3816556/2019-01), as well as the support of the Post-Graduation Program in Food Engineering (Federal University of Paraná, Curitiba, Brazil). The authors would also like to thank R. H. Ribani of the National Council for Scientific and Technological Development CNPq (Grant number 432361/2018-9) for the financial support, as well as also acknowledge the support of the Center of Electronic Microscopy of UFPR for the scanning electron microscopy analysis and thank the UFPR for the laboratory structure such as FT-IR of the Chemistry department and DRX of the Physics department.

Funding

The research was financially supported by CAPES (Coordination for the Improvement of Higher Education Personnel) granted to B. P. Costa (Grant number 88882.3816556/2019–01). R.H. Ribani would like to thank the National Council for Scientific and Technological Development—CNPq (Grant number 314184/2020–1).

Author information

Authors and Affiliations

Authors

Contributions

BPC designed the study, collected experimental data, performed analyses, interpreted the results, and wrote the manuscript. RCTB and AMM helped in the analysis of antioxidants and thermogravimetry, interpretation of data in the writing of the manuscript. MI, FESBA, and DC assisted in the extraction and characterization methods of the starches and writing of the manuscript. Professor Dr. RHR supervised the project and contributed to the writing of the article.

Corresponding author

Correspondence to Rosemary Hoffmann Ribani.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, B.P., Carpiné, D., da Silva Bambirra Alves, F.E. et al. Thermal, structural, morphological and bioactive characterization of acid and neutral modified loquat (Eriobotrya japonica lindl.) seed starch and its by-products. J Therm Anal Calorim 147, 6721–6737 (2022). https://doi.org/10.1007/s10973-021-10965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10965-2

Keywords

Navigation