Skip to main content
Log in

Effect of isolation methods on the crystalline, pasting, thermal properties and antioxidant activity of starch from queen sago (Cycas circinalis) seed

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Crystalline, pasting and thermal properties and antioxidant activity of starch isolated from queen sago seed by using different isolation methods such as water steeping, alkali steeping and enzymatic extraction methods were evaluated. The properties studied include, chemical composition, morphology, swelling, solubility, color, X-ray diffraction (XRD), texture, pasting (RVA), total phenolic content, antioxidant activity and thermal (DSC) properties. Among the isolation methods, enzymatic extraction method is efficient as compared to alkali and water steeping method. Enzymatically extracted sago starch (ES) showed highest yield, L* value, swelling, solubility and lower non starch components. ES formed harder gel as compared to alkali steeped sago starch (AS) and water steeped sago starch (WS). SEM showed presence of more agglomerated granular structure in AS. ES showed highest peak, trough and break down viscosity. Setback and final viscosity was highest for AS. Isolation methods affected on the total phenolic content and antioxidant activity of queen sago seed starch. Highest gelatinization enthalpy of AS was correlated with higher relative crystallinity and presence of more agglomerated structure. The queen sago seed starch isolated by enzymatic extraction method has better properties and industrial relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.M.I.S.K. Senavirathna, S. Ekanayake, E.R. Jansz, Starch/Staerke 68, 999 (2016)

    Article  CAS  Google Scholar 

  2. S.C. Alcázar-alay, M. Angela, A. Meireles, Food Sci. Technol. Int. 35, 215 (2015)

    Article  Google Scholar 

  3. E. Agama-Acevedo, S.L. Rodriguez-Ambriz, F.J. García-Suárez, F. Gutierrez-Méraz, G. Pacheco-Vargas, L.A. Bello-Pérez, Starch/Staerke 66, 337 (2014)

    Article  CAS  Google Scholar 

  4. B.C. Maniglia, D.R. Tapia-Blácido, Food Hydrocoll. 55, 47 (2016)

    Article  CAS  Google Scholar 

  5. P.R. Correia, M.C. Nunes, M.L. Beirão-da-Costa, Food Hydrocoll. 30, 448 (2013)

    Article  CAS  Google Scholar 

  6. Q. Sun, L. Chu, L. Xiong, F. Si, J. Food Sci. Technol. 52, 327 (2015)

    Article  CAS  Google Scholar 

  7. J. Blazek, L. Copeland, Carbohydr. Polym. 71, 380 (2008)

    Article  CAS  Google Scholar 

  8. AOAC, Association of Official Analytical Chemists, 15th edn. (AOAC, Washington DC, 1990)

    Google Scholar 

  9. I.H. Williams, F.D. Kuzina, Cereal Chem. 47, 411 (1970)

    CAS  Google Scholar 

  10. C. Sudheesh, K.V. Sunooj, J. George, Int. J. Biol. Macromol. 125, 1084 (2019)

    Article  CAS  Google Scholar 

  11. C. Sudheesh, K.V. Sunooj, J. George, J. Food Meas. Charact. (2019). https://doi.org/10.1007/s11694-018-0016-x

    Article  Google Scholar 

  12. L.A. Bello-Pérez, P.C. Flores-Silva, G.A. Camelo-Méndez, O. Paredes-López, J.D. De Figueroa-Cárdenas, Cereal Chem. 92, 265 (2015)

    Article  Google Scholar 

  13. J.T. Martins, M.A. Cerqueira, A.A. Vicente, Food Hydrocoll. 27, 220 (2012)

    Article  CAS  Google Scholar 

  14. M.Z. Nor Nadiha, A. Fazilah, R. Bhat, A.A. Karim, Food Chem. 121, 1053 (2010)

    Article  CAS  Google Scholar 

  15. P.R. Correia, M.L. Beirão-Da-Costa, Food Bioprod. Process. 90, 309 (2012)

    Article  CAS  Google Scholar 

  16. N.M. Vicentini, N. Dupuy, M. Leitzelman, M.P. Cereda, P.J.A. Sobral, Spectrosc. Lett. 38, 749 (2005)

    Article  CAS  Google Scholar 

  17. F. Zhang, Y. Zhang, K. Thakur, J. Zhang, Z. Wei, Food Chem. 275, 8 (2019)

    Article  CAS  Google Scholar 

  18. F. Zeng, F. Ma, F. Kong, Q. Gao, S. Yu, Food Chem. 172, 92 (2015)

    Article  CAS  Google Scholar 

  19. I.A. Wani, M. Jabeen, H. Geelani, F.A. Masoodi, I. Saba, S. Muzaffar, Food Hydrocoll. 35, 253 (2014)

    Article  CAS  Google Scholar 

  20. K.O. Adebowale, B.I. Olu-Owolabi, E.K. Olawumi, O.S. Lawal, Ind. Crops Prod. 21, 343 (2005)

    Article  CAS  Google Scholar 

  21. K. Kaur, N. Singh, Food Chem. 71, 511 (2000)

    Article  CAS  Google Scholar 

  22. E. Pérez-Pacheco, V.M. Moo-Huchin, R.J. Estrada-León, A. Ortiz-Fernández, L.H. May-Hernández, C.R. Ríos-Soberanis, D. Betancur-Ancona, Carbohydr. Polym. 101, 920 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Department of Food Science and Technology and Central Instrumentation Facility, Pondicherry University (Grant No. F1-17.1/2016-17/MANF-2015-17-KER-52862) for providing laboratory and instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kappat Valiyapeediyekkal Sunooj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noora, B., Sudheesh, C., Sangeetha, N. et al. Effect of isolation methods on the crystalline, pasting, thermal properties and antioxidant activity of starch from queen sago (Cycas circinalis) seed. Food Measure 13, 2147–2156 (2019). https://doi.org/10.1007/s11694-019-00135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00135-2

Keywords

Navigation