Skip to main content
Log in

Developing a bioactive and biodegradable film from modified loquat (Eriobotrya japonica Lindl) seed starch

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Loquat (Eriobotrya japonica Lindl) seed starch (KS)-based films obtained via casting were developed using glycerol and sorbitol as plasticizers. Higher purity starch was achieved using the alkaline steeping method. The starch characterization involved proximal composition, thermal, structural, morphological and antioxidant analyses in order to assess its impact on the film properties. Film performance was evaluated in water vapor permeability (WVP), microstructure, physical properties, antioxidant activity, opacity and solubility. KS exhibited a high yield (24%), amylose (33.61%) and phenolics compared to non-conventional starches, indicating appreciable antioxidant capacity. Film solubility and WVP were affected by the plasticizers. Alkaline starch film (KSF) plasticized with sorbitol was strong and rigid, little soluble and less permeable compared to KSF plasticized with glycerol. Therefore, while all KSF films appear as a potential material for active food packaging, and due to their antioxidant properties, KS presents itself as a highly promising starch source for application in films.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made - Supplementary Information. Sci Adv. 2017;3(7):19–24. https://doi.org/10.1126/sciadv.1700782.

    Article  CAS  Google Scholar 

  2. ASTM Standard D6954–18 (2018). Standard Guide for Exposing and Testing Plastics that Degrade in the Environment by a Combination of Oxidation and Biodegradation. Annual book of ASTM Standards. ASTM International, West Conshohocken, PA, 2018.

  3. Alcázar-alay SC, Angela M, Meireles A. Physicochemical properties, modifications and application of starches from different botanical sources. Food Sci Technol. 2015;35(2):215–36. https://doi.org/10.1590/1678-457X.6749.

    Article  Google Scholar 

  4. Galus S, Kibar EAA, Gniewosz M, Kraśniewska K. Novel materials in the preparation of edible films and coatings - a review. Coatings. 2020;10(7):1–14. https://doi.org/10.3390/coatings10070674.

    Article  CAS  Google Scholar 

  5. Han JH. Edible Films and Coatings: A Review. In Innovations in Food Packaging: Second Edition. 2020; Elsevier Ltd. https://doi.org/10.1016/B978-0-12-394601-0.00009-6

  6. Maniglia BC, Tessaro L, Ramos AP, Tapia-Blácido DR. Which plasticizer is suitable for films based on babassu starch isolated by different methods? Food Hydrocoll. 2018;2019(89):143–52. https://doi.org/10.1016/j.foodhyd.2018.10.038.

    Article  CAS  Google Scholar 

  7. Costa BP, Carpiné D, Alves FESB, Barbi RT, Ikeda M, Melo AM, Ribani RH. Thermal, structural, morphological and bioactive characterization of acid and neutral modified loquat (Eriobotrya japonica Lindl.) seed starch and its by-products. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10965-2.

    Article  Google Scholar 

  8. Juliano BO. (2015). Relation of Starch Composition , Protein Content , and Gelatinization Temperature to Cooking and Eating Qualities of Milled Rice. January 1965.

  9. Hoover R. The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Crit Rev Food Sci Nutr. 2010;50(9):835–47. https://doi.org/10.1080/10408390903001735.

    Article  CAS  Google Scholar 

  10. Abbas KA, Khalil KS, Hussin MAS. Modified starches and their usages in selected food products: a review Study. J Agric Sci. 2014. https://doi.org/10.5539/jas.v2n2p90.

    Article  Google Scholar 

  11. Haq F, Yu H, Wang L, Teng L, Haroon M, Khan RU, Mehmood S, Bilal-Ul-Amin, Ullah RS, Khan A, Nazir A. Advances in chemical modifications of starches and their applications. Carbohydr Res. 2019;476:12–35. https://doi.org/10.1016/j.carres.2019.02.007.

    Article  CAS  Google Scholar 

  12. Buffo RA, Han JH. Edible films and coatings from plant origin proteins. Innov Food Packag. 2015. https://doi.org/10.1016/B978-012311632-1/50049-8.

    Article  Google Scholar 

  13. Dangaran K, Tomasula PM, Qi P. Edible films and coatings for food applications. In Edible Films and Coatings for Food Applications. 2009; https://doi.org/10.1007/978-0-387-92824-1

  14. Gheribi R, Puchot L, Verge P, Jaoued-Grayaa N, Mezni M, Habibi Y, Khwaldia K. Development of plasticized edible films from Opuntia ficus-indica mucilage: a comparative study of various polyol plasticizers. Carbohydr Polym. 2018;190:204–11. https://doi.org/10.1016/j.carbpol.2018.02.085.

    Article  CAS  Google Scholar 

  15. Guo K, Lin L, Fan X, Zhang L, Wei C. Comparison of structural and functional properties of starches from five fruit kernels. Food Chem. 2018;257:75–82. https://doi.org/10.1016/j.foodchem.2018.03.004.

    Article  CAS  Google Scholar 

  16. Lopes MMA, Sanches AG, de Souza KO, Silva EO. Loquat/Nispero Eriobotrya japonica Lindl. Exot Fruits. 2018. https://doi.org/10.1016/b978-0-12-803138-4.00037-x.

    Article  Google Scholar 

  17. Barbi TR, Teixeira GL, Hornung PS, Ávila S, Ribani RH. Eriobotrya japonica seed as a new source of starch: assessment of phenolic compounds, antioxidant activity, thermal, rheological and morphological properties. Food Hydrocoll. 2018;77:646–58. https://doi.org/10.1016/j.foodhyd.2017.11.006.

    Article  CAS  Google Scholar 

  18. AOAC. American association of official analytical chemists. Official methods of analysis of the American association of official analytical chemists. 17th ed. USA: Gaithersburg; 2000.

    Google Scholar 

  19. Martínez C, Cuevas F. Evaluación de la calidad culinaria y molinera del arroz. Centro Int Agric Trop (CIAT). 1989. https://doi.org/10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  20. Hunterlab. (1997). The color management company. Universal software. Version 3.2. Reston.

  21. Cai YZ, Corke H. Production and properties of 2,3-butanediol. J Sens Nutr Qual food. 2000;65(3600):1248–52.

    CAS  Google Scholar 

  22. Cano-Chauca M, Stringheta PC, Ramos AM, Cal-Vidal. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov Food Sci Emerg Technol. 2005;6:420–8.

    Article  CAS  Google Scholar 

  23. Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN. Encapsulation of oil in powder using spray drying and fluidized bed agglomeration. J Food Eng. 2006;75(1):27–35.

    Article  CAS  Google Scholar 

  24. Ikeda M, de Melo AM, Costa BP, Barbi RT, Ribani RH. Nutritional and bioactive composition of achachairu (Garcinia humilis) seed flour: A potential ingredient at three stages of ripening, LWT; 2021; (152), 112251, ISSN 0023–6438, https://doi.org/10.1016/j.lwt.2021.112251.

  25. ASTM Standard D2457–13 (2013). Standard test method for specular gloss of plastic films and solid plastics. Annual book of ASTM Standards. ASTM International, West Conshohocken, PA, 2013.

  26. ASTM Standard D6988–13 (2013). Standard guide for determination of thickness os plastic film test specimens. Annual book of ASTM Standards. ASTM International, West Conshohocken, PA, 2013.

  27. Zahedi Y, Ghanbarzadeh B, Sedaghat N. Physical properties of edible emulsified films based on pistachio globulin protein and fatty acids. J Food Eng. 2010;100(1):102–8. https://doi.org/10.1016/j.jfoodeng.2010.03.033.

    Article  CAS  Google Scholar 

  28. ASTM Standard D543–20 (2020). Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents. Annual book of ASTM Standards. ASTM International, West Conshohocken, PA, 2020.

  29. ASTM Standard E96/E96M (2013). Standard test methods for water vapor transmission of materials. Annual book of ASTM Standards. ASTM International, West Conshohocken, PA, 2013.

  30. Laureanti EJG, Paiva TS, Tasso IS, Dallabona ID, Helm CV, Jorge LMM, Jorge RMM. Development of active cassava starch films reinforced with waste from industrial wine production and enriched with pink pepper extract. J Appl Polym Sci. 2021. https://doi.org/10.1002/app/50922.

    Article  Google Scholar 

  31. Benzie I, Strain J. the ferric reducing ability of plasma(FRAP)as a measure of “Antioxidan power”:the FRAP assay analytical biochemistry. Anal Biochem. 1996;239:70–6.

    Article  CAS  Google Scholar 

  32. Brand-Williams W, Cuvelier ME, Berset C. Respostas perceptivas E. LWT Food Sci Technol. 1995;28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.

    Article  CAS  Google Scholar 

  33. Re R, Pellegrini N, Protegente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med. 1999;26:1231–7.

    Article  CAS  Google Scholar 

  34. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1998;299:152–78. https://doi.org/10.1016/S0076-6879(99)99017-1.

    Article  Google Scholar 

  35. Brazil. Agência Nacional de Vigilância Sanitária – RDC 263 de 22 de setembro de 2005. Regulamento Técnico Para Produtos de Cereais, Amidos, Farinhas e Farelos.

  36. Nogueira GF, Fakhouri FM, Oliveira RA. Extraction and characterization of arrowroot (Maranta arundinaceae L) starch and its application in edible films. Carbohydr Polym. 2018;186:64–72. https://doi.org/10.1016/j.carbpol.2018.01.024.

    Article  CAS  Google Scholar 

  37. Galindez A, Daza LD, Homez-Jara A, Eim VS, Váquiro HA. Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydr Polym. 2019;215:143–50. https://doi.org/10.1016/j.carbpol.2019.03.074.

    Article  CAS  Google Scholar 

  38. Ojo MO, Ariahu CC, Chinma EC. Proximate, functional and pasting properties of cassava starch and mushroom (Pleurotus Pulmonarius) flour blends. Am J Food Sci Technol. 2016;5(1):11–8. https://doi.org/10.12691/AJFST-5-1-3.

    Article  Google Scholar 

  39. Tian SJ, Rickard JE, Blanshard JMV. Physicochemical properties of sweet potato starch. J Sci Food Agric. 1991;57(4):459–91. https://doi.org/10.1002/jsfa.2740570402.

    Article  CAS  Google Scholar 

  40. Gordillo SCA, Valencia AG, Zapata VRA, Henao AAC. Physicochemical characterization of arrowroot starch (Maranta arundinacea Linn) and glycerol/arrowroot starch membranes. Int J Food Eng. 2014;10(4):727–35. https://doi.org/10.1515/ijfe-2014-0122.

    Article  CAS  Google Scholar 

  41. de Castro DS, Moreira SI, Silva MLM, Lima JP, da Silva WP, Gomes JP, de Figueirêdo RMF. Isolation and characterization of starch from pitomba endocarp. Food Res Int. 2018. https://doi.org/10.1016/j.foodres.2018.06.032.

    Article  Google Scholar 

  42. Correia PR, Beirão-Da-Costa ML. Chestnut and acorn starch properties affected by isolation methods. Starch/Staerke. 2010;62(8):421–8. https://doi.org/10.1002/star.201000003.

    Article  CAS  Google Scholar 

  43. Gonçalves PM, Noreña CPZ, Silveira NP, Brandelli A. Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT. 2014;58(1):21–7. https://doi.org/10.1016/j.lwt.2014.03.015.

    Article  CAS  Google Scholar 

  44. Denardin CC, Silva LP. Estrutura dos grânulos de amido e sua relação com propriedades físico-químicas. Ciência Rural. 2009;39(3):945–54. https://doi.org/10.1590/s0103-84782009005000003.

    Article  CAS  Google Scholar 

  45. Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. CarbohydR Polym. 2001;45(3):253–67. https://doi.org/10.1016/S0144-8617(00)00260-5.

    Article  CAS  Google Scholar 

  46. Maniglia BC, Tapia-Blácido DR. Isolation and characterization of starch from babassu mesocarp. Food Hydrocoll. 2016. https://doi.org/10.1016/j.foodhyd.2015.11.001.

    Article  Google Scholar 

  47. Silveira Hornung P, Ávila S, Apea-Bah FB. Sustainable use of Ilex paraguariensis waste in improving biodegradable corn starch films’ mechanical, thermal and bioactive properties. J Polym Environ. 2020;28:1696–709. https://doi.org/10.1007/s10924-020-01723-w.

    Article  CAS  Google Scholar 

  48. Corradini A, Elisângela I. Composição química, propriedades mecânicas e térmicas da fibra de frutos de cultivares de coco verde. Rev Bras Frutic [online]. 2009;31(3):837–46. https://doi.org/10.1590/S0100-29452009000300030.

    Article  Google Scholar 

  49. Micić DM, Ostojić SB, Simonović MB, Pezo BL, Simonović BR. Thermal behavior of raspberry and blackberry seed flours and oils. Thermochim Acta. 2015;617:21–7. https://doi.org/10.1016/j.tca.2015.08.017.

    Article  CAS  Google Scholar 

  50. Zhu F, Wang S. Physicochemical properties, molecular structure, and uses of sweetpotato starch. Trends Food Sci Technol. 2014;36(2):68–78. https://doi.org/10.1016/j.tifs.2014.01.008.

    Article  CAS  Google Scholar 

  51. Thomaz L, Ito VC, Malucelli LC, da Silva MACF, Demiate IM, Bet CD, Lacerda LG. Effects of dual modification on thermal, structural and pasting properties of taro (Colocasia esculenta L) starch. J Therm Anal Calorim. 2019;139:3123–32.

    Article  Google Scholar 

  52. Bisinella RZB, Beninca C, Bet CD, Oliveira CS, Demiate IM, Schnitzler E. Thermal, structural, and morphological characterization of organic rice starch after physical treatment. J Therm Anal Calorim. 2021;1:1–9.

    Google Scholar 

  53. Iturriaga L, Lopez B, Añon M. Thermal and physicochemical characterization of seven argentine rice flours and starches. Food Res Int. 2004;37–5:439–47. https://doi.org/10.1016/j.foodres.2003.12.005.

    Article  CAS  Google Scholar 

  54. Kong X, Bao J, Corke H. Physical properties of Amaranthus starch. Food Chem. 2009;113:371–6.

    Article  CAS  Google Scholar 

  55. Villarreal ME, Ribotta PD, Iturriaga LB. Comparing methods for extracting Amaranthus starch and the properties of the isolated starches. LWT Food Sci Technol. 2013;51:441–7.

    Article  CAS  Google Scholar 

  56. Hong J, Li L, Li C, Liu C, Zheng X, Bian K. Effect of heat-moisture treatment on physicochemical, thermal, morphological, and structural properties of mechanically activated large a- and small B-wheat starch granules. J Food Sci. 2019;84(10):2795–804. https://doi.org/10.1111/1750-3841.14745.

    Article  CAS  Google Scholar 

  57. Nogueira GF, Soares CT, Cavasini R, Fakhouri FM, de Oliveira RA. Bioactive films of arrowroot starch and blackberry pulp: physical, mechanical and barrier properties and stability to pH and sterilization. Food Chem. 2019;275(2019):417–25. https://doi.org/10.1016/j.foodchem.2018.09.054.

    Article  CAS  Google Scholar 

  58. Miller K, Silcher C, Lindner M, Schmid M. Effects of glycerol and sorbitol on optical, mechanical, and gas barrier properties of potato peel-based films. Packag Technol Sci. 2020;34(1):11–23. https://doi.org/10.1002/pts.2536.

    Article  CAS  Google Scholar 

  59. Ma S, Zheng Y, Zhou R, Ma M. Characterization of chitosan films incorporated with different substances of konjac glucomannan, cassava starch, maltodextrin and gelatin, and application in mongolian cheese packaging. Coatings. 2021;11(1):84. https://doi.org/10.3390/coatings11010084.

    Article  CAS  Google Scholar 

  60. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR., Sahari J. Effect of glycerol and sorbitol plasticizers on physical and thermal properties of sugar palm starch based films. Recent Advances in Environment, Ecosystems and Development Effect. 13Th International Conference on Environment, Ecosystems, and Development (EED ’15), Kuala Lumpur, Malaysia; 2015. p. 157–162.

  61. Lusiana SW, Putri D, Nurazizah IZ, Bahruddin. Bioplastic properties of Sago-PVA starch with glycerol and sorbitol plasticizers. J Phys Conf Ser. 2019. https://doi.org/10.1088/1742-6596/1351/1/012102.

    Article  Google Scholar 

  62. Sothornvit R, Krochta JM. Plasticizers in edible films and coatings. Innov Food Packag. 2005. https://doi.org/10.1016/B978-012311632-1/50055-3.

    Article  Google Scholar 

  63. Sogut E, Cakmak H. Utilization of carrot (Daucus carota L.) fiber as filler for chitosan based filmes Food Hydrocolloids, 2020; 106, 105861

  64. de Carvalho GR, Marques GS, Jorge MLM, Jorge RMM. Journal of Applied Polymers Science, 2019; 136, 1

  65. Remor Lopes A, Dragunski DC, Júnior LFB, Francisco CB. Caetano J. Revista Brasileira de Agropecuária Sustentável 2018, 8.

  66. Basiak E, Lenart A, Debeaufort F. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. J Sci Food Agric. 2017;97(3):858–67. https://doi.org/10.1002/jsfa.7807.

    Article  CAS  Google Scholar 

  67. Beigzadeh Ghelejlu S, Esmaiili M, Almasi H. Chracterization of chitosan-nanoclay bionanocomposity active filmes containing milk thistly. Int J Biol Macromol. 2016;86:613.

    Article  CAS  Google Scholar 

  68. Qin Y, Liu Y, Yuan L, Yong H, Liu J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll. 2019. https://doi.org/10.1016/j.foodhyd.2019.05.017.

    Article  Google Scholar 

  69. Treenate P, Monvisade P, Yamaguchi M. The effect of glycerol/water and sorbitol/water on the plasticization of hydroxyethylacryl chitosan/sodium alginate films. MATEC Web of Conf. 2015. https://doi.org/10.1051/matecconf/20153002006.

    Article  Google Scholar 

  70. Jangchud A, Chinnan MS. Properties of peanut protein film: sorption isotherm and plasticizer effect. LWT Food Sci Technol. 1999;32(2):89–94. https://doi.org/10.1006/fstl.1998.0498.

    Article  CAS  Google Scholar 

  71. Guilbert S, Cuq B, Gontard N. Recent innovation in edible and/or biodegradable packaging materials. Food Addit Contam. 1997;14:741.

    Article  CAS  Google Scholar 

  72. ASTM Standard D6400–21 (2021). Standard Guide for Exposing and Testing Plastics that Degrade in the Environment by a Combination of Oxidation and Biodegradation. Annual book of ASTM Standards. ASTM International, West Conshohocken, PA, 2018.

  73. Brown WE. Plastics in Food Packaging: Properties, Design and Fabrication; Marcel Dekker Inc, Ed.; New York, 1992.

  74. Piñeros-Hernandez D, Medina-Jaramillo C, López-Córdoba A, Goyanes S. Edible cassava starch filmes carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll. 2017;63:488.

    Article  Google Scholar 

  75. Alqahtani N, Alnemr T, Ali S. Development of low-cost biodegradable films from corn starch and date palm pits (Phoenix dactylifera). Food Biosci. 2021;42: 101199. https://doi.org/10.1016/j.fbio.2021.101199.

    Article  CAS  Google Scholar 

  76. Waterschoot J, Goman SV, Fierens E, Delcour JA. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Staerke. 2015;67(1–2):14–29. https://doi.org/10.1002/star.201300238.

    Article  CAS  Google Scholar 

  77. García MA, Martino MN, Zaritzky NE. Edible starch films and coatings characterization: scanning electron microscopy, water vapour, and gas permeabilities. Scanning. 1999;21(5):348–53. https://doi.org/10.1002/sca.4950210508.

    Article  Google Scholar 

  78. Palacios-Fonseca AJ, Castro-Rosas J, Gómez-Aldapa CA, Tovar-Benítez T, Millán-Malo BM, del Real A, Rodríguez-García ME. Effect of the alkaline and acid treatment on the physicochemical properties of corn starch. CyTA-J Food. 2013;11(1):67–74. https://doi.org/10.1080/19476337.2012.761651.

    Article  CAS  Google Scholar 

  79. Zainuddin SYZ, Ahmad I, Kargarzadeh H. Cassava starch biocomposites reinforced with cellulose nanocrystals from kenaf fibers. Composit Interfaces. 2013;20(3):189–99. https://doi.org/10.1080/15685543.2013.766122.

    Article  CAS  Google Scholar 

  80. Debandi MV, Bernal C, Francois NJ. Development of biodegradable films based on chitosan/glycerol blends suitable for biomedical applications. J Tissue Sci & Eng. 2017. https://doi.org/10.4172/2157-7552.1000187.

    Article  Google Scholar 

  81. Silveira Hornung P, Ávila S, Apea-Bah FB, Liu J, Teixeira GL, Ribani RH, Beta T. Sustainable use of ilex paraguariensis waste in improving biodegradable corn starch films’ mechanical, thermal and bioactive properties. J Polym Environ. 2020;28(6):1696–709. https://doi.org/10.1007/s10924-020-01723-w.

    Article  CAS  Google Scholar 

  82. Chang-Bravo L, López-Córdoba A, Martino M. Biopolymeric matrices made of carrageenan and corn starch for the antioxidant extracts delivery of Cuban red propolis and yerba mate. React Funct Polym. 2014;85:11–9. https://doi.org/10.1016/j.reactfunctpolym.2014.09.025.

    Article  CAS  Google Scholar 

  83. Jaramillo CM, Seligra PG, Goyanes S, Bernal C, Famá L. Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Starch/Staerke. 2015;67(9–10):780–9. https://doi.org/10.1002/star.201500033.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of the Center of Electronic Microscopy of UFPR for the scanning electron microscopy analysis and the Federal University of Paraná.

Funding

Financial support from CAPES (Coordination for the Improvement of Higher Education Personnel) granted to B. P. Costa (grant number 88882.3816556/2019–01). Financial support from National Council for Scientific and Technological Development CNPq (grant number 432361/2018–9) granted for R. H. Ribani.

Author information

Authors and Affiliations

Authors

Contributions

BPC: Conceptualization, Software, Validation, Formal Analysis, Investigation, Resources, Data Curation, Writing—Original Draft; DC: Conceptualization, Validation, Data Curation, Writing—Original Draft; MI: Formal Analysis, Investigation, Writing—Review & Editing; AMM: Formal Analysis, Investigation, Writing—Review & Editing; FESBA: Writing—Review & Editing; RHR: Conceptualization, Writing—Original Draft, Writing—Review & Editing, Supervision, Project Administration, Funding acquisition.

Corresponding author

Correspondence to Bruno Patrício Costa.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Practical Application: A bioactive and non-conventional starch can be an alternative to the food industry since they meet the new process requirements of solubility, thermal resistance being capable to maintain the phenolic compounds and antioxidants. Also, meeting the growing interest to develop active, biodegradable food packaging.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, B.P., Carpiné, D., Ikeda, M. et al. Developing a bioactive and biodegradable film from modified loquat (Eriobotrya japonica Lindl) seed starch. J Therm Anal Calorim 147, 14297–14313 (2022). https://doi.org/10.1007/s10973-022-11780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11780-z

Keywords

Navigation