Skip to main content
Log in

Rheokinetic characterization of polyurethane formation in a highly filled composite solid propellant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The cure kinetics of a composite solid propellant premix based on ammonium perchlorate, hydroxyl-terminated polybutadiene (HTPB) and diisocyanate system was investigated using a rheometer. The cross-linking kinetics of HTPB resin in the presence of tolylene diisocyanate in a propellant was studied under isothermal conditions in the temperature range of 60–70 °C by rheometry. The kinetic parameters of the curing reaction were calculated from the rheological measurements. These parameters were derived by a multiple regression analysis using a classical phenomenological model expanded by an empirically derived diffusion factor. The obtained kinetic parameters were used to generate a master equation capable of predicting the reaction profile at any given temperature. Excellent match between observed and predicted cure profiles in the entire temperature range validated the adequacy of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mahanta AK, Pathak DD. HTPB-polyurethane: a versatile fuel binder for composite solid propellant. In: Zafar F, Sharmin E, editors. Polyurethanes. London: Intech; 2012. p. 229–62.

    Google Scholar 

  2. Smith PL, Bankaitis H. HTPB propellants for large booster applications. AIAA paper 1971;71–708.

  3. Maruizumi H, Kosaka I, Suzuki S, Fukuma D, Yamamoto A. Development of HTPB binder for solid propellants. AIAA paper 1988;88-3352.

  4. Nagappa R, Kurup M. Development of HTPB propellant systems for ISRO’s motors. AIAA paper 1990;90-2331.

  5. Sekkar V, Venkatachalam S, Ninan KN. Rheokinetic studies on the formation of urethane networks based on hydroxyl terminated polybutadiene. Eur Polym J. 2002;38:169–78.

    Article  CAS  Google Scholar 

  6. Lucio B, de la Fuente JL. Rheological cure characterization of an advanced functional polyurethane. Thermochim Acta. 2014;596:6–13.

    Article  CAS  Google Scholar 

  7. Lucio B, de la Fuente JL. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method. Thermochim Acta. 2016;625:28–35.

    Article  CAS  Google Scholar 

  8. El-Basuony SA, Sadek MA, Wafy RZ, Mostafa HE. Thermokinetic studies of polyurethanes based on hydroxyl terminated polybutadiene prepolymer. J Therm Anal Calorim. 2018;131:2013–9.

    Article  CAS  Google Scholar 

  9. Lemos MA, Bohn MA. DMA of polyester-based polyurethane elastomers for composite rocket propellants containing different energetic plasticizers. J Therm Anal Calorim. 2018;131:595–600.

    Article  CAS  Google Scholar 

  10. Lucio B, de la Fuente JL. Rheokinetic analysis on the formation of metallo-polyurethanes based on hydroxyl-terminated polybutadiene. Eur Polym J. 2014;50:117–26.

    Article  CAS  Google Scholar 

  11. Lucio B, de la Fuente JL. Non-isothermal DSC and rheological curing of ferrocene-functionalized hydroxyl-terminated polybutadiene polyurethane. React Funct Polym. 2016;107:60–8.

    Article  CAS  Google Scholar 

  12. Rahimi S, Peretz A. On shear rheology of gel propellants. Propellants Explos Pyrotech. 2007;32(2):165–74.

    Article  CAS  Google Scholar 

  13. Botchu V, Jyoti S, Baek SW. Rheological characterization of metalized and non-metalized ethanol gel propellants. Propellants Explos Pyrotech. 2014;39:866–73.

    Article  Google Scholar 

  14. Teipel U, Barth UF. Rheology of nano-scale aluminum suspensions. Propellants Explos Pyrotech. 2001;26:268–72.

    Article  CAS  Google Scholar 

  15. Reddy TS, Nair JK, Satpute RS, Gore GM, Sikder AK. Rheological studies on energetic thermoplastic elastomers. J Appl Polym Sci. 2010;118:2365–8.

    CAS  Google Scholar 

  16. You JS, Noh ST. Rheological and thermal properties of glycidyl azide polyol-based energetic thermoplastic polyurethane elastomer. Polym Int. 2013;62:158–64.

    Article  CAS  Google Scholar 

  17. Kohga M, Hagihara Y. Rheology of concentrated AP/HTPB suspensions prepared at the upper limit of AP content. Propellants Explos Pyrotech. 2000;25:199–202.

    Article  CAS  Google Scholar 

  18. Mahanta AK, Dharmsaktu I, Pattnayak PK. Rheological behaviour of HTPB-based composite propellant: effect of temperature and pot life on casting rate. Def Sci J. 2007;57(4):435–42.

    Article  Google Scholar 

  19. Mahanta AK, Goyal M, Pathak D. Rheokinetic analysis of hydroxy terminated polybutadiene based solid propellant slurry. E J Chem. 2010;7(1):171–9.

    Article  CAS  Google Scholar 

  20. Bandgar BM, Krishnamurthy VN, Mukundan T, Sharma KC. Mathematical modeling of rheological properties of hydroxyl-terminated polybutadiene binder and dioctyl adipate plasticizer. J Appl Polym Sci. 2002;85:1002–7.

    Article  CAS  Google Scholar 

  21. Bandgar BM, Sharma KC, Mukundan T, Krishnamurthy VN. Rheokinetic modeling of HTPB–TDI and HTPB–DOA–TDI systems. J Appl Polym Sci. 2003;89:1331–5.

    Article  CAS  Google Scholar 

  22. Manohar S, Kanungo BK, Bansal TK. Kinetic studies on curing of hydroxy-terminated polybutadiene prepolymer-based polyurethane networks. J Appl Polym Sci. 2002;85:842–6.

    Article  Google Scholar 

  23. Muthiah RM, Krishnamurthy VN, Gupta BR. Rheology of HTPB propellant: development of generalized correlation and evaluation of pot life. Propellants Explos Pyrotech. 1996;21:186–92.

    Article  CAS  Google Scholar 

  24. Li HX, Wang JY, Chong-Wei AN. Study on the rheological properties of CL-20/HTPB casting explosives. Cent Eur J Energy Mater. 2014;11(2):237–55.

    CAS  Google Scholar 

  25. Sourour S, Kamal MR. Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochim Acta. 1976;14(1–2):41–59.

    Article  CAS  Google Scholar 

  26. Fournier J, Williams G, Duch C, Aldridge GA. Changes in molecular dynamics during bulk polymerization of an epoxide–amine system as studied by dielectric relaxation spectroscopy. Macromolecules. 1996;29:7097–107.

    Article  CAS  Google Scholar 

  27. Horie H, Hiura M, Sawada I, Mita H, Kambe J. Calorimetric investigation of polymerization reactions. III. Curing reaction of epoxides with amines. Polym Sci A-1 Polym Chem. 1970;8:1357–72.

    Article  CAS  Google Scholar 

  28. Kamal MR, Sourour S. Kinetics and thermal characterization of thermoset cure. Polym Eng Sci. 1973;13:59–64.

    Article  CAS  Google Scholar 

  29. Cole KC, Hechler JJ, Noel D. A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 2. Application to a typical system based on bis[4-(diglycidylamino)phenyl]methane and bis(4-aminophenyl) sulfone. Macromolecules. 1991;24:3098–110.

    Article  CAS  Google Scholar 

  30. Liang G, Chandrashekhara K. Cure kinetics and rheology characterization of soy-based epoxy resin system. J Appl Polym Sci. 2006;102(4):3168–80.

    Article  CAS  Google Scholar 

  31. Rabearison N, Jochum CH, Grandidier JC. A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite LY556 epoxy. J Mater Sci. 2011;46(3):787–96.

    Article  CAS  Google Scholar 

  32. Corezzi S, Fioretto D, Santucci G, Kenny JM. Modeling diffusion-control in the cure kinetics of epoxy-amine thermoset resins: an approach based on configurational entropy. Polymer. 2010;51:5833–45.

    Article  CAS  Google Scholar 

  33. Tung CYM, Dynes PJ. Relationship between viscoelastic properties and gelation in thermosetting systems. J Appl Polym Sci. 1982;27:569–80.

    Article  CAS  Google Scholar 

  34. Laza JM, Julian CA, Larrairu E, Rodriguez M, Leon LM. Thermal scanning rheometer analysis of curing kinetic of an epoxy resin: 2. An amine as curing agent. Polymer. 1999;40(1):35–45.

    Article  CAS  Google Scholar 

  35. Winter HH, Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol. 1986;30(2):367–82.

    Article  CAS  Google Scholar 

  36. Sekkar V, Krishnamurthy VN, Jain SR. Kinetics of copolyurethane network formation. J Appl Polym Sci. 1997;66:1795–801.

    Article  CAS  Google Scholar 

  37. Simons DM, Arnold RG. Relative reactivity of the isocyanate groups in toluene-2,4-diisocyanate. J Am Chem Soc. 1956;78(8):1658–9.

    Article  CAS  Google Scholar 

  38. Shekhar H. Effect of temperature on mechanical properties of solid propellants. Def Sci J. 2011;61(6):529–33.

    Article  CAS  Google Scholar 

  39. Gligorijevic N, Zivkovic S, Subotic S, Pavkovic B, Nikolic M, Kozomara S, Rodic V. Mechanical properties of HTPB composite propellants in the initial period of service life. Sci Tech Rev. 2014;64(4):8–16.

    Article  CAS  Google Scholar 

  40. Villar LD, Cicaglioni T, Diniz MF, Takahashi MFK, Rezende LC. Thermal aging of HTPB/IPDI-based polyurethane as a function of NCO/OH ratio. Mater Res. 2011;14(3):372–5.

    Article  CAS  Google Scholar 

  41. Flory PJ, Rehner J. Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys. 1943;11:521–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Santhosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, G., Reshmi, S. & Reghunadhan Nair, C.P. Rheokinetic characterization of polyurethane formation in a highly filled composite solid propellant. J Therm Anal Calorim 140, 213–223 (2020). https://doi.org/10.1007/s10973-019-08793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08793-6

Keywords

Navigation