Skip to main content
Log in

Calculation and confirmation of the kinetic triplet of metallurgical coke gasification with carbon dioxide under isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study examines the usefulness of a compound kinetic calculation technology, a technology which is developed from the application of master plots as well as the Arrhenius plot and which is adopted to estimate the kinetic triplet (the mechanism function, the frequency factor, and the activation energy) of metallurgical coke gasification with carbon dioxide under isothermal conditions. We employed master plots for selecting a suitable mechanism function for gasification of metallurgical coke and discovered the Johnson–Mehl–Avrami–Erofe’ev–Kolmogorov model—[− ln(1 − x)]1/m (m = 0.57)—to be the optimum mechanism function. According to this mechanism function, we estimated the Arrhenius parameters (the frequency factor and the activation energy) from the Arrhenius plot, and they are 0.79 s−1 and 72.71 kJ mol−1, respectively; additionally, we established the correctness of kinetic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kinnertová E, Slovák V. Kinetics of resorcinol–formaldehyde polycondensation by DSC. J Therm Anal Calorim. 2018;134(2):1215–22.

    Article  Google Scholar 

  2. Achilias DS, Tsagkalias IS. Investigation of radical polymerization kinetics of poly(ethylene glycol) methacrylate hydrogels via DSC and mechanistic or isoconversional models. J Therm Anal Calorim. 2018;134(2):1307–15.

    Article  CAS  Google Scholar 

  3. Sindhu NV, Muraleedharan K. Kinetic study of the multistep thermal behaviour of barium titanyl oxalate prepared via chemical precipitation method. J Therm Anal Calorim. 2019;136(3):1295–306.

    Article  CAS  Google Scholar 

  4. Lysenko EN, Surzhikov AP, Nikolaev EV, Vlasov VA, Zhuravkov SP. The oxidation kinetic study of mechanically milled ultrafine iron powders by thermogravimetric analysis. J Therm Anal Calorim. 2018;134(1):307–12.

    Article  CAS  Google Scholar 

  5. Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147(2):377–85.

    Article  CAS  Google Scholar 

  6. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104(46):10777–82.

    Article  CAS  Google Scholar 

  7. Málek J, Koga N, Pérez-Maqueda LA, Criado JM. The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. J Therm Anal Calorim. 2013;113(3):1437–46.

    Article  Google Scholar 

  8. Moser G, Tschamber V, Schönnenbeck C, Brillard A, Brilhac J-F. Non-isothermal oxidation and kinetic analysis of pure magnesium powder. J Therm Anal Calorim. 2019;136(5):2145–55.

    Article  CAS  Google Scholar 

  9. Wang Z, Liang Y, Peng N, Peng B. The non-isothermal kinetics of zinc ferrite reduction with carbon monoxide. J Therm Anal Calorim. 2019;136(5):2157–64.

    Article  CAS  Google Scholar 

  10. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans AIME. 1939;135:416–58.

    Google Scholar 

  11. Avrami M. Kinetics of phase change. I: general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  12. Avrami M. Kinetics of phase change. II: transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  13. Avrami M. Kinetics of phase change. III: granulation, phase change, and microstructures. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  14. Erofe’ev BV. Generalized equation of chemical kinetics and its application in reactions involving solids. Dokl Akad Nauk SSSR. 1946;52:511–4.

    Google Scholar 

  15. Kolmogorov AN. A statistical theory for the recrystallization of metals. Izv Akad Nauk SSSR. 1937;1:355–60.

    Google Scholar 

  16. Vyazovkin S. Model-free kinetics. J Therm Anal Calorim. 2006;83(1):45–51.

    Article  CAS  Google Scholar 

  17. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  18. Vyazovkin S. Thermal analysis. Anal Chem. 2004;76(12):3299–312.

    Article  Google Scholar 

Download references

Acknowledgements

The present study has been sponsored by the National Natural Science Foundation of China (Nos. 51704149 and 51634004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongsuo Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, Q. Calculation and confirmation of the kinetic triplet of metallurgical coke gasification with carbon dioxide under isothermal conditions. J Therm Anal Calorim 139, 2235–2241 (2020). https://doi.org/10.1007/s10973-019-08660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08660-4

Keywords

Navigation