Skip to main content
Log in

Non-isothermal oxidation and kinetic analysis of pure magnesium powder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With high energy densities, metals appear as innovative energy carriers. In the present study, magnesium powder is considered as fuel for energy production through slow combustion. Thermogravimetric analyses (TG) were carried out to extract the kinetic parameters and determine the mechanism of the overall slow combustion reaction. TG experiments were performed under synthetic airflow and under different heating rates (from 1 to 20 °C min−1) from ambient temperature to 900 °C, with two Mg size fractions. The optimal kinetic parameters were determined solving a kinetic model and applying an optimization procedure, both using the Scilab software. The Avrami–Erofeev reaction function of second order, which is a nucleation model, gave the best results for both size fractions. The activation energies were found equal to 146.1 kJ mol−1 and 290.0 kJ mol−1 for the 20–50 µm and 50–71 µm fractions, respectively. The corresponding optimal pre-exponential factors were found equal to 1.2 × 106 s−1 and 2.0 × 1015 s−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bergthorson JM, Goroshin S, Soo MJ, Julien P, Palecka J, Frost DL, Jarvis DJ. Direct combustion of recyclable metal fuels for zero-carbon heat and power. Appl Energy. 2015;160:368–82. https://doi.org/10.1016/j.apenergy.2015.09.037.

    Article  CAS  Google Scholar 

  2. Garra P, Leyssens G, Allgaier O, Schönnenbeck C, Tschamber V, Brilhac J-F, Tahtouh T, Guézet O, Allano S. Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions. Appl Energy. 2017;189:578–87. https://doi.org/10.1016/j.apenergy.2016.12.069.

    Article  CAS  Google Scholar 

  3. Bergthorson JM, Yavor Y, Palecka J, Georges W, Soo M, Vickery J, Goroshin S, Frost DL, Higgins AJ. Metal-water combustion for clean propulsion and power generation. Appl Energy. 2017;186:13–27. https://doi.org/10.1016/j.apenergy.2016.10.033.

    Article  CAS  Google Scholar 

  4. Fischer SH, Grubelich MC. Theoretical energy release of thermites, intermetallics, and combustible metals, 1998. https://doi.org/10.2172/658208.

  5. Diouf B, Pode R. Potential of lithium-ion batteries in renewable energy. Renew Energy. 2015;76:375–80. https://doi.org/10.1016/j.renene.2014.11.058.

    Article  Google Scholar 

  6. Hwang HT, Varma A. Hydrogen storage for fuel cell vehicles. Curr Opin Chem Eng. 2014;5:42–8. https://doi.org/10.1016/j.coche.2014.04.004.

    Article  Google Scholar 

  7. Lide DR. CRC handbook of chemistry and physics, 89th edn, Taylor & Francis, 2008.

  8. Wang S, Corcoran AL, Dreizin EL. Combustion of magnesium powders in products of an air/acetylene flame. Combust Flame. 2015;162:1316–25. https://doi.org/10.1016/j.combustflame.2014.10.016.

    Article  CAS  Google Scholar 

  9. Glassman I. Metal combustion processes, Princeton University NJ James Forrestal Research Center, 1959. http://www.dtic.mil/get-tr-doc/pdf?AD=AD0228566. Accessed September 5, 2017.

  10. DeLuca LT, Galfetti L, Colombo G, Maggi F, Bandera A, Babuk VA, Sinditskii VP. Microstructure effects in aluminized solid rocket propellants. J. Propuls. Power. 2010;26:724–32. https://doi.org/10.2514/1.45262.

    Article  CAS  Google Scholar 

  11. Maggi F, Dossi S, DeLuca LT. Combustion of metal agglomerates in a solid rocket core flow. Acta Astronaut. 2013;92:163–71. https://doi.org/10.1016/j.actaastro.2012.04.036.

    Article  CAS  Google Scholar 

  12. Zhu M, Chen X, Zhou C, Xu J, Musa O, Xiang H. Experimental and numerical investigations on the decomposition and combustion characteristics of composite propellant with Mg/Al particles additives. Appl Therm Eng. 2017;111:863–75. https://doi.org/10.1016/j.applthermaleng.2016.09.140.

    Article  CAS  Google Scholar 

  13. Friedman R, Maček A. Ignition and combustion of aluminium particles in hot ambient gases. Combust Flame. 1962;6:9–19. https://doi.org/10.1016/0010-2180(62)90062-7.

    Article  CAS  Google Scholar 

  14. Markstein GH. Magnesium-oxygen dilute diffusion flame. Symp. Int. Combust. 1963;9:137–47. https://doi.org/10.1016/S0082-0784(63)80020-X.

    Article  Google Scholar 

  15. Cassel HM, Liebman I. Combustion of magnesium particles II—ignition temperatures and thermal conductivities of ambient atmospheres. Combust Flame. 1963;7:79–81. https://doi.org/10.1016/0010-2180(63)90157-3.

    Article  CAS  Google Scholar 

  16. Cassel HM, Liebman I. Combustion of magnesium particles I. Combust Flame. 1962;6:153–6.

    Article  CAS  Google Scholar 

  17. Dreizin EL, Berman CH, Vicenzi EP. Condensed-phase modifications in magnesium particle combustion in air. Combust Flame. 2000;122:30–42. https://doi.org/10.1016/S0010-2180(00)00101-2.

    Article  CAS  Google Scholar 

  18. Corcoran A, Mercati S, Nie H, Milani M, Montorsi L, Dreizin EL. Combustion of fine aluminum and magnesium powders in water. Combust Flame. 2013;160:2242–50. https://doi.org/10.1016/j.combustflame.2013.04.019.

    Article  CAS  Google Scholar 

  19. Lomba R, Bernard S, Gillard P, Mounaïm-Rousselle C, Halter F, Chauveau C, Tahtouh T, Guézet O. Comparison of combustion characteristics of magnesium and aluminum powders. Combust Sci Technol. 2016;188:1857–77. https://doi.org/10.1080/00102202.2016.1211871.

    Article  CAS  Google Scholar 

  20. Julien P, Whiteley S, Soo M, Goroshin S, Frost DL, Bergthorson JM. Flame speed measurements in aluminum suspensions using a counterflow burner. Proc Combust Inst. 2017;36:2291–8. https://doi.org/10.1016/j.proci.2016.06.150.

    Article  CAS  Google Scholar 

  21. Liebman I, Corry J, Perlee HE. Ignition and incendivity of laser irradiated single micron-size magnesium particles. Combust Sci Technol. 1972;5:21–30. https://doi.org/10.1080/00102207208952499.

    Article  CAS  Google Scholar 

  22. Chintersingh K-L, Schoenitz M, Dreizin EL. Oxidation kinetics and combustion of boron particles with modified surface. Combust Flame. 2016;173:288–95. https://doi.org/10.1016/j.combustflame.2016.08.027.

    Article  CAS  Google Scholar 

  23. Markstein GH. Heterogeneous reaction processes in metal combustion. Symp Int Combust. 1967;11:219–34. https://doi.org/10.1016/S0082-0784(67)80149-8.

    Article  Google Scholar 

  24. Takeno T, Yuasa S. Ignition of magnesium and magnesium-aluminum alloy by impinging hot-air stream. Combust Sci Technol. 1980;21:109–21. https://doi.org/10.1080/00102208008946924.

    Article  CAS  Google Scholar 

  25. Rosenband V, Gany A, Timnat YM. A model for low-temperature ignition of magnesium particles. Combust Sci Technol. 1995;105:279–94. https://doi.org/10.1080/00102209508907755.

    Article  CAS  Google Scholar 

  26. Goldshleger UI, Amosov SD. Combustion modes and mechanisms of high-temperature oxidation of magnesium in oxygen. Combust Explos Shock Waves. 2004;40:275–84.

    Article  Google Scholar 

  27. Chunmiao Y, Lifu Y, Chang L, Gang L, Shengjun Z. Thermal analysis of magnesium reactions with nitrogen/oxygen gas mixtures. J Hazard Mater. 2013;260:707–14. https://doi.org/10.1016/j.jhazmat.2013.06.047.

    Article  CAS  PubMed  Google Scholar 

  28. Nie H, Schoenitz M, Dreizin EL. Oxidation of magnesium: implication for aging and ignition. J Phys Chem C. 2016;120:974–83. https://doi.org/10.1021/acs.jpcc.5b08848.

    Article  CAS  Google Scholar 

  29. Gil MV, Riaza J, Álvarez L, Pevida C, Pis JJ, Rubiera F. A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:49–55. https://doi.org/10.1007/s10973-011-1342-y.

    Article  CAS  Google Scholar 

  30. Niu SL, Lu CM, Han KH, Zhao JL. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere. J Therm Anal Calorim. 2009;98:267. https://doi.org/10.1007/s10973-009-0133-1.

    Article  CAS  Google Scholar 

  31. Conesa JA, Rey L. Thermogravimetric and kinetic analysis of the decomposition of solid recovered fuel from municipal solid waste. J Therm Anal Calorim. 2015;120:1233–40. https://doi.org/10.1007/s10973-015-4396-4.

    Article  CAS  Google Scholar 

  32. da Silva DR, Crespi MS, Crnkovic PCGM, Ribeiro CA. Pyrolysis, combustion and oxy-combustion studies of sugarcane industry wastes and its blends. J Therm Anal Calorim. 2015;121:309–18. https://doi.org/10.1007/s10973-015-4532-1.

    Article  CAS  Google Scholar 

  33. Zellagui S, Schönnenbeck C, Zouaoui-Mahzoul N, Leyssens G, Authier O, Thunin E, Porcheron L, Brilhac J-F. Pyrolysis of coal and woody biomass under N2 and CO2 atmospheres using a drop tube furnace—experimental study and kinetic modeling. Fuel Process Technol. 2016;148:99–109. https://doi.org/10.1016/j.fuproc.2016.02.007.

    Article  CAS  Google Scholar 

  34. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  35. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28. https://doi.org/10.1021/jp062746a.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Tschamber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, G., Tschamber, V., Schönnenbeck, C. et al. Non-isothermal oxidation and kinetic analysis of pure magnesium powder. J Therm Anal Calorim 136, 2145–2155 (2019). https://doi.org/10.1007/s10973-018-7845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7845-z

Keywords

Navigation