Skip to main content
Log in

Thermal decomposition characteristic parameters for the outer material of composite hydrogen storage tank by cone calorimeter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition behaviours of the outer material of the high-pressure fully wrapped composite hydrogen storage tank were studied in cone calorimeter with a piloted ignition at various heat fluxes. The characteristic parameters, such as ignition time, mass loss rate, heat release rate and effective heat of combustion, were measured. In particular, the correlations of the ignition temperature, thermal response parameter, the heat of gasification and the heat of combustion were derived. The composite material satisfies the thermally thick model. The only one peak appears on the curve of MLR, HRR or EHC at the heat fluxes below or equal to 30 kW m−2, while one main peak and multiple small peaks appear at the heat fluxes greater than 30 kW m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Veziroglu TN. 21st Century’s energy: hydrogen energy system. Energy Convers Manag. 2008;49:1820–31.

    Article  CAS  Google Scholar 

  2. Hoffmann P. Tomorrow’s energy: hydrogen, fuel cells, and the prospects for a cleaner planet. Cambridge: MIT Press; 2012.

    Book  Google Scholar 

  3. Toldy A, Szolnoki B, Marosi G. Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polym Degrad Stab. 2011;96:371–6.

    Article  CAS  Google Scholar 

  4. Wang X, Tong J, Sheng F, Wu W, Zuo L. 70 MPa high—pressure vehicle—mounted aluminum alloy liner carbon fiber full—wound hydrogen storage cylinder: China, CN 103672387 A[P]. 2014.

  5. Zheng J, Ou K, Bie H, Xu P, Zhao Y, Liu X, et al. Heat transfer analysis of high-pressure hydrogen storage tanks subjected to localized fire. Int J Hydrog Energy. 2012;37:13125–31.

    Article  CAS  Google Scholar 

  6. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353–8.

    Article  CAS  Google Scholar 

  7. Perrette L, Wiedemann HK. CNG buses fire safety: learnings from recent accidents in France and Germany. In: Society of automative engineer world congress. (2007).

  8. Zalosh R, Firexplo W. CNG and hydrogen vehicle fuel tank failure incidents, testing, and preventive measures. In: Proceedings of the Affichee spring national meeting. (2008).

  9. Quang Dao D, Luche J, Richard F, Rogaume T, Bourhy-Weber C, Ruban S. Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter. Int J Hydrog Energy. 2013;38:8167–78.

    Article  CAS  Google Scholar 

  10. Tranchard P, Duquesne S, Samyn F, Estèbe B, Bourbigot S. Kinetic analysis of the thermal decomposition of a carbon fibre-reinforced epoxy resin laminate. J Anal Appl Pyrol. 2017;126:14–21.

    Article  CAS  Google Scholar 

  11. Hidalgo JP, Pironi P, Hadden RM, Welch S. Experimental study of the burning behaviour of carbon fibre composite materials used in high pressure vessels. In: European conference on composite material. 2016.

  12. Régnier N, Fontaine S. Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG. J Therm Anal Calorim. 2001;64:789–99.

    Article  Google Scholar 

  13. Xu Y, Lv C, Shen R, Wang Z, Wang Q. Experimental investigation of thermal properties and fire behavior of carbon/epoxy laminate and its foam core sandwich composite. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7735-4.

    Article  Google Scholar 

  14. Zheng J, Ou K, Hua Z, Zhao Y, Xu P, Hu J, et al. Experimental and numerical investigation of localized fire test for high-pressure hydrogen storage tanks. Int J Hydrog Energy. 2013;38:10963–70.

    Article  CAS  Google Scholar 

  15. Zhang Z, Wang C, Huang G, Liu H, Yang S, Zhang A. Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR. J Hazard Mater. 2018;357:73–80.

    Article  CAS  Google Scholar 

  16. Quintiere JG. A theoretical basis for flammability properties. Fire Mater. 2006;30:175–214.

    Article  CAS  Google Scholar 

  17. Wei R, Huang S, Huang Q, Ouyang D, Chen Q, Yuen R, et al. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter. J Therm Anal Calorim. 2018;134:1471–80.

    Article  CAS  Google Scholar 

  18. Luche J, Rogaume T, Richard F, Guillaume E. Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter. Fire Saf J. 2011;46:451–61.

    Article  CAS  Google Scholar 

  19. Babrauskas V. Ignition handbook: principles and applications to fire safety engineering, fire investigation, risk management and forensic science. J Fire Prot Eng. 2003;39:255–6.

    Google Scholar 

  20. Mouritz AP, Gibson AG. Fire properties of polymer composite materials. Dordrecht: Springer; 2006.

    Google Scholar 

  21. Wang Z, Wang J. An experimental study on the fire characteristics of new and aged building wires using a cone calorimeter. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7626-8.

    Article  Google Scholar 

  22. Janssens M. Piloted ignition of wood: a review. Fire Mater. 1991;15:151–67.

    Article  CAS  Google Scholar 

  23. Luche J, Mathis E, Rogaume T, Richard F, Guillaume E. High-density polyethylene thermal degradation and gaseous compound evolution in a cone calorimeter. Fire Saf J. 2012;54:24–35.

    Article  CAS  Google Scholar 

  24. Janssens M. Fundamental thermophysical characteristics of wood and their role in enclosure fire growth. Ghent: Ghent University; 1991.

    Google Scholar 

  25. Chen X, Lu S, Li C, Zhang J, Liew KM. Experimental study on ignition and combustion characteristics of typical oils. Fire Mater. 2013;38:409–17.

    Article  CAS  Google Scholar 

  26. Tewarson A, Khan MM. Flame propagation for polymers in cylindrical configuration and vertical orientation. Symp Combust. 1989;22:1231–40.

    Article  Google Scholar 

  27. Tewarson A. Flammability parameters of materials: ignition, combustion, and fire propagation. J Fire Sci. 1994;12:329–56.

    Article  CAS  Google Scholar 

  28. Jr DH, Quintiere JG. Material fire properties and predictions for thermoplastics. Fire Saf J. 1996;26:241–68.

    Article  Google Scholar 

  29. Chen R, Lu S, Zhang B, Li C, Lo S. Correlation of rate of gas temperature rise with mass loss rate in a ceiling vented compartment. Chin Sci Bull. 2014;59:4559–67.

    Article  Google Scholar 

  30. Chen R, Lu S, Li C, Ding Y, Zhang B, Lo S. Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene–propylene–diene monomer (EPDM) rubber. J Therm Anal Calorim. 2016;123:545–56.

    Article  CAS  Google Scholar 

  31. Chen Q, Wang X, Zhou T, Ding C, Wang J. Investigation on the fire hazard characteristics of ethanol–water mixture and Chinese liquor by a cone calorimeter. J Therm Anal Calorim. 2019;135(4):2297–2308.

    Article  CAS  Google Scholar 

  32. He W, Qi F, Wang N, Chen X, Zhang K, Guo J. The influence of thermal oxidative ageing on flame retardancy, thermal and mechanical properties of LGFPP/IFR composites. J Therm Anal Calorim. 2018;131:1017–24.

    Article  CAS  Google Scholar 

  33. Rhodes BT, Quintiere JG. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Saf J. 1996;26:221–40.

    Article  CAS  Google Scholar 

  34. Quintiere JG, Rangwala AS. A theory for flame extinction based on flame temperature. Fire Mater. 2004;28:387–402.

    Article  CAS  Google Scholar 

  35. Thornton WM. XV. The relation of oxygen to the heat of combustion of organic compounds. Philos Mag. 1917;33:196–203.

    Article  CAS  Google Scholar 

  36. Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Saf J. 1992;18:255–72.

    Article  CAS  Google Scholar 

  37. Janssens ML. Measuring rate of heat release by oxygen consumption. Fire Technol. 1991;27:234–49.

    Article  Google Scholar 

  38. Ouyang D, Chen M, Wang J. Fire behaviors study on 18650 batteries pack using a cone-calorimeter. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7891-6.

    Article  Google Scholar 

  39. Association KS. IOS 5660-1. Reaction-to-fire tests—heat release, smoke production and mass loss rate—part 1: heat release rate (cone calorimeter method). 2nd ed. Geneva: International Organization for Standardization; 2002.

  40. Zhong G, Mao B, Wang C, Jiang L, Xu K, Sun J, et al. Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter. J Therm Anal Calorim. 2019;135(5):2879–2889.

    Article  CAS  Google Scholar 

  41. Martinka J, Rantuch P, Sulová J, Martinka F. Assessing the fire risk of electrical cables using a cone calorimeter. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7556-5.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Key R&D Program of China (No. 2016YFE0113400) and National Natural Science Foundation of China (No. 51675474).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjian Wang or Weiping Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, C., Huang, G. et al. Thermal decomposition characteristic parameters for the outer material of composite hydrogen storage tank by cone calorimeter. J Therm Anal Calorim 138, 1299–1310 (2019). https://doi.org/10.1007/s10973-019-08189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08189-6

Keywords

Navigation