Skip to main content
Log in

Investigation on the fire hazard characteristics of ethanol–water mixture and Chinese liquor by a cone calorimeter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a series of ethanol–water mixture and Chinese liquor combustion experiments were conducted using an ISO5660-1 cone calorimeter and an automatic flash point tester. The main purpose was to obtain key fire parameter data, including the burning duration, mass loss rate, mass loss rate per unit area, heat release rate per unit area, CO and CO2 volume fraction, CO2/CO ratio and closed-cup flash point. At the same time, the experimental differences between Chinese liquor and ethanol–water mixture were analyzed. Also, the fire risk classification was discussed based on the code of GB 50016-2014. When the ethanol volume fraction of Chinese liquor is greater than 34.8 vol%, the fire risk is the most dangerous level, Class I. While the critical ethanol volume fraction of ethanol–water mixture is 38.9 vol%, it needs to pay more attention to the fire safety of Chinese liquor storage and usage when the ethanol volume fraction is generally from 30 to 65 vol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Mandelbaum DG. Alcohol and culture. Curr Anthropol. 1965;6(3):281–93.

    Article  Google Scholar 

  2. Center for Chemical Process Safety. Guidelines for engineering design for process safety. 2nd ed. New York: American Institute of Chemical Engineers; 1993.

    Book  Google Scholar 

  3. Guangyuan J, Zhu Y, Yan X. Mystery behind Chinese liquor fermentation. Trends Food Sci Technol. 2017;63:18–28.

    Article  CAS  Google Scholar 

  4. Xiaowei Z, Han B. Baijiu, Chinese liquor: history, classification and manufacture. J Ethnic Foods. 2016;3(1):19–25.

    Article  Google Scholar 

  5. Turner C. How much alcohol is in a ‘standard drink’? An analysis of 125 studies. Br J Addict. 1990;85(9):1171–5.

    Article  CAS  PubMed  Google Scholar 

  6. http://www.chinadaily.com.cn/life/2010-10/27/content_11692216.htm. Accessed 3 Mar 2018.

  7. http://www.chinatraveldepot.com/C173-Chinese-Alcohol. Accessed 3 Mar 2018.

  8. Song X. A discussion on the fire and explosion protection design of liquor factories. Master thesis. Chongqing University; 2005.

  9. http://news.cnr.cn/native/gd/20160519/t20160519_522182613.shtml. Accessed 3 Mar 2018.

  10. Yunlun Y. Discussion on the static hazard of wine with high spirit—cause determination for“8· 4”wine tank explosion in gongque wine factory of Luzhou. Fire Sci Technol. 2006;25(3):407–10.

    Google Scholar 

  11. GB 50016-2014. Code for fire protection design of building. Beijing: Ministry of Construction of China; 2014.

    Google Scholar 

  12. Hurley MJ, et al. SFPE handbook of fire protection engineering. New York: Springer; 2015.

    Google Scholar 

  13. Lyondell Chemical Company. Ethyl alcohol handbook. 6th ed. Houston: Lyondell Chemical Company; 2003.

    Google Scholar 

  14. Hakkarainen T, Korhonen T, Vaari J. Heat release characteristics of ethanol-water mixtures: small-scale experiments. Fire Saf J. 2017;91:174–81.

    Article  CAS  Google Scholar 

  15. Fischer SJ, Hardouin-Duparc B, Grosshandler WL. The structure and radiation of an ethanol pool fire. Combust Flame. 1987;3:291–306.

    Article  Google Scholar 

  16. Babrauskas V. Heat release rates. In: SFPE handbook of fire protection engineering. New York: Springer; 2015.

  17. Degroote E, Garcia Ybarra PL. Flame propagation over liquid alcohols: Part I. Experimental results. J Therm Anal Calorim. 2005;80(3):541–8.

    Article  CAS  Google Scholar 

  18. Degroote E, Garcia Ybarra PL. Flame propagation over liquid alcohols: Part III. Pulsating regime. J Therm Anal Calorim. 2005;80(3):555–8.

    Article  CAS  Google Scholar 

  19. Degroote E, Garcia Ybarra PL. Flame propagation over liquid alcohols: Part II. Steady propagation regimes. J Therm Anal Calorim. 2005;80(3):549–53.

    Article  CAS  Google Scholar 

  20. Gharagheizi F, Keshavarz MH, Sattari M. A simple accurate model for prediction of flash point temperature of pure compounds. J Therm Anal Calorim. 2011;110(2):1005–12.

    Article  CAS  Google Scholar 

  21. GB 50160-2008. Fire prevention code of petrochemical enterprise design. Beijing: Ministry of Construction of China; 2008.

    Google Scholar 

  22. NFPA 30. Flammable and combustible liquids code. Quincy: National Fire Protection Association; 2011.

    Google Scholar 

  23. Biteau H, et al. Calculation methods for the heat release rate of materials of unknown composition. In: Proceedings of 9th IAFSS international symposium on fire safety science. 2008. https://doi.org/10.3801/iafss.fss.9-1165.

  24. Mingyi C, et al. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122(2):755–63.

    Article  CAS  Google Scholar 

  25. ISO 5660-1:2015. Reaction-to-fire tests—heat release, smoke production and mass loss rate—Part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement). Geneva: International Organization for Standardization; 2015.

    Google Scholar 

  26. Wenxia Z, et al. Combustion calorimetry of carbonate electrolytes used in lithium ion batteries. J Fire Sci. 2015;33(1):22–36.

    Article  CAS  Google Scholar 

  27. Junhyun K, Lee J-H, Kim S. Estimating the fire behavior of wood flooring using a cone calorimeter. J Therm Anal Calorim. 2011;110(2):677–83.

    Google Scholar 

  28. Chen R, Shouxiang L, et al. Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber. J Therm Anal Calorim. 2016;123(1):545–56.

    Article  CAS  Google Scholar 

  29. Qiang X, Jin C, Jiang Y. Compare the flammability of two extruded polystyrene foams with micro-scale combustion calorimeter and cone calorimeter tests. J Therm Anal Calorim. 2017;127(3):2359–66.

    Article  CAS  Google Scholar 

  30. Ran T, et al. Effects of low air pressure on radiation-controlled rectangular ethanol and n-heptane pool fires. Proc Combust Inst. 2013;34(2):2591–8.

    Article  CAS  Google Scholar 

  31. Changfa T, et al. Effects of oblique air flow on burning rates of square ethanol pool fires. J Hazard Mater. 2013;260:552–62.

    Article  CAS  Google Scholar 

  32. Chow WK. Comment on estimating heat release rate for a design fire in sprinkler protected area. Int J Eng Perform-Based Fire Codes. 2005;7(1):1–5.

    Google Scholar 

  33. NFPA 92B. Guide for smoke management systems in malls, atria, and large areas. Quincy: National Fire Protection Association; 2000. p. 2000.

    Google Scholar 

  34. Kim HJ, Lilley DG. Heat release rates of burning items in fires. J Propul Power. 2002;18(4):866–70.

    Article  Google Scholar 

  35. McCaffrey BJ. Purely buoyant diffusion flames: some experimental results, NBSIR 79–1910. Maryland: National Bureau of Standards; 1979.

    Book  Google Scholar 

  36. Hu J. Studies on the flame necking-in characteristic and temperature profile in developing area of pool fires. Master thesis. University of Science and Technology of China; 2015.

  37. Liaw HJ, Chiu YY. The prediction of the flash point for binary aqueous-organic solutions. J Hazard Mater. 2003;101(2):83–106.

    Article  CAS  PubMed  Google Scholar 

  38. Le Cong T, Dagaut P. Experimental and detailed modeling study of the effect of water vapor on the kinetics of combustion of hydrogen and natural gas, Impact on NOx. Energ Fuel. 2009;23(2):725–34.

    Article  CAS  Google Scholar 

  39. Dryer FL. Water addition to practical combustion systems—concepts and applications. Symp (Int) Combust. 1977;6(1):279–95. https://doi.org/10.1016/s0082-0784(77)80332-9.

    Article  Google Scholar 

  40. Pandiana M, Sivapirakasamb SP, Udayakumarc M. Investigations on emission characteristics of the pongamia biodiesel–diesel blend fuelled twin cylinder compression ignition direct injection engine using exhaust gas recirculation methodology and dimethyl carbonate as additive. J Renew Sustain Ener. 2010;2(4):043110.

    Article  CAS  Google Scholar 

  41. Bruno TJ, Wolk A, Naydich A, Huber ML. Composition-explicit distillation curves for mixtures of diesel fuel with dimethyl carbonate and diethyl carbonate. Energy Fuels. 2009;23(8):3989–97.

    Article  CAS  Google Scholar 

  42. Li Dan, Fang Wenjun, et al. Effects of dimethyl or diethyl carbonate as an additive on volatility and flash point of an aviation fuel. J Hazard Mater. 2009;161:1193–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (No: 51376172 and No. 51706218). In addition, we deeply appreciate the support of Suqian City Public Security Fire Brigade in Jiangsu province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wang, X., Zhou, T. et al. Investigation on the fire hazard characteristics of ethanol–water mixture and Chinese liquor by a cone calorimeter. J Therm Anal Calorim 135, 2297–2308 (2019). https://doi.org/10.1007/s10973-018-7323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7323-7

Keywords

Navigation