Skip to main content
Log in

An experimental study on the fire characteristics of new and aged building wires using a cone calorimeter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The fire behavior of one flame-retardant PVC cable used as building wire is investigated in this work. Bench scale tests were performed using a cone calorimeter. The influence of two key factors, namely incident external heat flux and thermal aging, on the cable fire characteristics is considered. The mass fraction, heat fraction, time-to-ignition (TTI), heat release rate (HRR), emissions and residues were measured. The TTI increases with the thermal aging time, and the peak heat release rate (pHRR) decreases for aged cables. Thermal aging can modify the chemical compositions and structures, leading to further changes in combustion. The higher heat flux caused a higher HRR and a lower burning duration for the studied new and aged cables. The difference in TTI and pHRR for new and aged cables is insignificant for higher external heat fluxes. Finally, the prominent effect of thermal aging on emissions and residues was highlighted using varying external heat fluxes. This work adds to the understanding of the difference in burning performance between new and aged building wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kobayashi Y, Huang X, Nakaya S, Tsue M, Fernandez-Pello C. Flame spread over horizontal and vertical wires: the role of dripping and core. Fire Saf J. 2017;91:112–22.

    Article  CAS  Google Scholar 

  2. Meinier R, Sonnier R, Zavaleta P, Suard S, Ferry L. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J Hazard Mater. 2018;342:306–16.

    Article  CAS  Google Scholar 

  3. Hirschler MM. Survey of fire testing of electrical cables. Fire Mater. 1992;16(3):107–18.

    Article  CAS  Google Scholar 

  4. Grzybowski S, Rakowska A, Thompson JE. Aging of polyethylene for cable insulation. IEEE Trans Electr Insul. 1987;EI-22(6):729–34. https://doi.org/10.1109/tei.1987.298934.

    Article  CAS  Google Scholar 

  5. Motori A, Sandrolini F, Montanari GC. A contribution to the study of aging of XLPE insulated cables. IEEE Trans Power Deliv. 1991;6(1):34–42. https://doi.org/10.1109/61.103719.

    Article  CAS  Google Scholar 

  6. Omastova M, Podhradska S, Prokes J, Janigova I, Stejskal J. Thermal ageing of conducting polymeric composites. Polym Degrad Stab. 2003;82(2):251–6. https://doi.org/10.1016/s0141-3910(03)00218-0.

    Article  CAS  Google Scholar 

  7. Tavares AC, Gulmine JV, Lepienski CM, Akcelrud L. The effect of accelerated aging on the surface mechanical properties of polyethylene. Polym Degrad Stab. 2003;81(2):367–73.

    Article  CAS  Google Scholar 

  8. Fernandez-Pello A, Hasegawa H, Staggs K, Lipska-Quinn A, Alvares N. A study of the fire performance of electrical cables. Fire Saf Sci. 1991;3:237–47.

    Article  Google Scholar 

  9. Emanuelsson V, Simonson M, Gevert T. The effect of accelerated ageing of building wires. Fire Mater. 2007;31(5):311–26. https://doi.org/10.1002/fam.944.

    Article  CAS  Google Scholar 

  10. Tewarson A, Lee J, Pion R. Categorization of cable flammability, part I, experimental evaluation of flammability parameters of cables using laboratory-scale apparatus. EPRI (Electric Power Research Institute, Palo Alto, CA) Project RP 1165–1, Factory Mutual Research Corporation, Norwood, MA; 1979.

  11. Sumitra P. Categorization of cable flammability: intermediate-scale fire tests of cable tray installations. Interim report NP-1881, Research Project 1165–1, Factory Mutual Research Corporation, Norwood, MA; 1982.

  12. Hirschler MM. Comparison of large-and small-scale heat release tests with electrical cables. Fire Mater. 1994;18(2):61–76.

    Article  CAS  Google Scholar 

  13. Barnes MA, Briggs PJ, Hirschler MM, Matheson AF, O’Neill TJ. A comparative study of the fire performance of halogenated and non-halogenated materials for cable applications. Part II tests on cable. Fire Mater. 1996;20(1):17–37.

    Article  CAS  Google Scholar 

  14. Elliot P, Whiteley R. A cone calorimeter test for the measurement of flammability properties of insulated wire. Polym Degrad Stab. 1999;64(3):577–84.

    Article  CAS  Google Scholar 

  15. Grayson SJ. Fire performance of electric cables-new test methods and measurement techniques. Final report of EU SMT projectSMT4-CT96-2059. Interscience Communications London; 2000.

  16. McGrattan KB, Lock AJ, Marsh ND, Nyden MR. Cable heat release, ignition, and spread in tray installations during fire (CHRISTIFIRE): phase 1-horizontal trays. NUREG/CR-7010, U.S.NRC; 2012.

  17. McGrattan KB, Bareham SD. Cable heat release, ignition, and spread in tray installations during fire (CHRISTIFIRE) phase 2: vertical shafts and corridors. Report NUREG/CR-7010, Volume 2, U.S.NRC; 2013.

  18. Zavaleta P, Charbaut S, Basso G, Audouin L, editors. Multiple horizontal cable tray fire in open atmosphere. In: Thirteenth international conference of the fire and materials, San Francisco, USA; 2013.

  19. Courty L, Garo J. External heating of electrical cables and auto-ignition investigation. J Hazard Mater. 2017;321:528–36.

    Article  CAS  Google Scholar 

  20. Zavaleta P, Audouin L. Cable tray fire tests in a confined and mechanically ventilated facility. Fire Mater. 2018;42(1):28–43.

    Article  CAS  Google Scholar 

  21. Grayson S, Van Hees P, Green AM, Breulet H, Vercellotti U. Assessing the fire performance of electric cables (FIPEC). Fire Mater. 2001;25(2):49–60.

    Article  CAS  Google Scholar 

  22. Fontaine G, Ngohang FE, Gay L, Bourbigot S. Investigation of the contribution to fire of electrical cable by a revisited mass loss cone. Fire Sci Technol. 2015;2017:687–93.

    Google Scholar 

  23. Babrauskas V. Heat release rates. SFPE handbook of fire protection engineering. Berlin: Springer; 2016. p. 799–904.

    Book  Google Scholar 

  24. Jakubowicz I, Yarahmadi N, Gevert T. Effects of accelerated and natural ageing on plasticized polyvinyl chloride (PVC). Polym Degrad Stab. 1999;66(3):415–21. https://doi.org/10.1016/S0141-3910(99)00094-4.

    Article  CAS  Google Scholar 

  25. Brebu M, Vasile C, Antonie SR, Chiriac M, Precup M, Yang J, et al. Study of the natural ageing of PVC insulation for electrical cables. Polym Degrad Stab. 2000;67(2):209–21.

    Article  CAS  Google Scholar 

  26. ISO I. 5660-1: 2015 Reaction-to-fire tests–Heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Geneva. Switzerland: International Organization for Standardization. 2015.

  27. Zaikov GE, Gumargalieva KZ, Pokholok TV, Moiseev YV. PVC wire coatings: part I-ageing process dynamics. Int J Polym Mater Polym Biomater. 1998;39(1–2):79–125.

    Article  CAS  Google Scholar 

  28. Hopkins D Jr, Quintiere JG. Material fire properties and predictions for thermoplastics. Fire Saf J. 1996;26(3):241–68.

    Article  CAS  Google Scholar 

  29. Rhodes BT, Quintiere JG. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Saf J. 1996;26(3):221–40.

    Article  CAS  Google Scholar 

  30. Schartel B, Hull TR. Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater. 2007;31(5):327–54.

    Article  CAS  Google Scholar 

  31. Thornton WXV. The relation of oxygen to the heat of combustion of organic compounds. Lond Edinb Dublin Philos Mag J Sci. 1917;33(194):196–203.

    Article  CAS  Google Scholar 

  32. Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4(2):61–5.

    Article  CAS  Google Scholar 

  33. Quennehen P, Royaud I, Seytre G, Gain O, Rain P, Espilit T, et al. Determination of the aging mechanism of single core cables with PVC insulation. Polym Degrad Stab. 2015;119:96–104.

    Article  CAS  Google Scholar 

  34. Chen M, Yuen R, Wang J. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries. J Therm Anal Calorim. 2017;129(1):181–8.

    Article  CAS  Google Scholar 

  35. Wei R, He Y, Zhang Z, He J, Yuen R, Wang J. Effect of different humectants on the thermal stability and fire hazard of nitrocellulose. J Therm Anal Calorim. 2018;1:1–17.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFC0802500). The authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, J. An experimental study on the fire characteristics of new and aged building wires using a cone calorimeter. J Therm Anal Calorim 135, 3115–3122 (2019). https://doi.org/10.1007/s10973-018-7626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7626-8

Keywords

Navigation