Skip to main content
Log in

The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The electro-osmotic flow of an aqueous solution of NaCl between two parallel silicon walls is studied through a molecular dynamics simulation. The objective here is to examine the dependency of the electro-osmotic flow on the surface charge density by considering the changes made in the structural properties of the electric double layer (EDL). The ion concentration, velocity profiles, and electric charge density of the electrolyte solution are investigated. Due to the partially charged atoms of the water molecules, water concentration is of a layered type near the wall. The obtained profiles revealed that an increase in the surface charge density, at low surface charges where the governing electrostatic coupling regime is Debye–Hückel, increases both the electro-osmotic velocity and the EDL thickness; whereas, a decreasing trend is observed in these two parameters in the intermediate regime. For high values of surface charge density, due to the charge inversion phenomenon, the reversed electro-osmotic flow will be generated in the channel. Results indicate that the absolute value of the reversed electro-osmotic velocity rises with an increase in the surface charge density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Freund JB (2001) Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. J Chem Phys 116:2194–2200

    Article  Google Scholar 

  2. Dongqing L (2004) Chapter 4 Electroosmotic flows in microchannels. Interface Sci Technol pp 92–203

  3. Helmholtz H (1879) Studien über electrische Grenzschichten. Ann Phys 243:337–382

    Article  Google Scholar 

  4. Yang C, Li D (1997) Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels. J Colloid Interface Sci 194:95–107

    Article  Google Scholar 

  5. Bianchi F, Ferrigno R, Girault HH (2000) Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimensions. Anal Chem 72:1987–1993

    Article  Google Scholar 

  6. Gao Y, Wong TN, Chai JC, Yang C, Ooi KT (2005) Numerical simulation of two-fluid electroosmotic flow in microchannels. Int J Heat Mass Transf 48:5103–5111

    Article  MATH  Google Scholar 

  7. Patankar NA, Hu HH (1998) Numerical simulation of electroosmotic flow. Anal Chem 70:1870–1881

    Article  Google Scholar 

  8. Arnold AK, Nithiarasu P, Tucker PG (2008) Finite element modeling of electro-osmotic flows on unstructured meshes. Int J Numer Meth Heat Fluid Flow 18:67–82

    Article  Google Scholar 

  9. Qiao R, Aluru NR (2005) Atomistic simulation of KCl transport in charged silicon nanochannels: interfacial effects. Colloids Surf, A 267:103–109

    Article  Google Scholar 

  10. Qiao R., Aluru N. R. (2004) Charge inversion and flow reversal in a nanochannel electro-osmotic flow. Phys Rev Lett 92

  11. Chen Y, Ni Z, Wang G, Xu D, Li D (2007) Electroosmotic flow in nanotubes with high surface charge densities. Nano Lett 8:42–48

    Article  Google Scholar 

  12. Jelinek B, Felicelli SD, Mlakar PF, Peters JF (2009) Molecular dynamics study of temperature effects on electrokinetic transport in si nanochannel. In: ASME 2009 International mechanical engineering congress and exposition Lake Buena Vista, Florida, USA

  13. Toghraie Semiromi D, Azimian AR (2010) Nanoscale Poiseuille flow and effects of modified Lennard-Jones potential function. Heat Mass Transf 46:791–801

    Article  Google Scholar 

  14. Toghraie Semiromi D, Azimian AR (2010) Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard-Jones potential function. Heat Mass Transfer 46:287–294

    Article  Google Scholar 

  15. Toghraie Semiromi D, Azimian AR (2011) Molecular dynamics simulation of nonodroplets with the modified Lennard-Jones potential function. Heat Mass Transf 47:579–588

    Article  Google Scholar 

  16. Toghraie Semiromi D, Azimian AR (2012) Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function. Heat Mass Transf 48:141–152

    Article  Google Scholar 

  17. Andelman D (1995) Electrostatic properties of membranes: the Poisson-Boltzmann theory. Handbook Biol Phys 1:603–642

    Article  Google Scholar 

  18. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. intermolecular forces: 331–342

  19. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  Google Scholar 

  20. Hockney RW, Eastwood JW (1981) Computer simulation using particles. New York

  21. Barrat JL, Bocquet L (1999) Large slip effect at a nonwetting fluid-solid interface. Phys Rev Lett 82:4671–4674

    Article  Google Scholar 

  22. Straeter TA (1971) On the extension of the davidon-broyden class of rank one, quasi-newton minimization methods to an infinite dimensional hilbert space with applications to optimal control problems. North Carolina State Univ, Raleigh

    Google Scholar 

  23. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  24. Bazart M (2005) Personal communications. Department of Mechanical Engineering, MIT

    Google Scholar 

  25. Wang M, Liu J, Chen S (2007) Electric potential distribution in nanoscale electroosmosis: from molecules to continuum. Taylor & Francis, London

    Google Scholar 

  26. Poppe H, Cifuentes A, Kok WT (1996) Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis. Anal Chem 68:888–893

    Article  Google Scholar 

Download references

Acknowledgments

The computational support by the National High Performance Computing Center of Sheikh-Bahaei at the Isfahan University of Technology, Iran, is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rezaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Azimian, A.R. & Semiromi, D.T. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study. Heat Mass Transfer 51, 661–670 (2015). https://doi.org/10.1007/s00231-014-1441-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1441-y

Keywords

Navigation