Skip to main content
Log in

Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle

Effects of temperature and solid volume fraction

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The correlations of thermal conductivity of alumina nanoparticle dispersed in pure ethylene glycol were proposed by neural network modeling using experimental data. The required input and target data have been taken from the experimental measurement to train artificial neural network (ANN). The temperatures were changed within 24–50 °C. Levenberg algorithm was used to train the ANN. Results showed that the thermal conductivity of nanofluid had a significant increase with increasing solid volume fraction of nanoparticles. The results also revealed that the ANN model can predict the thermal conductivity of Al2O3–EG nanofluid accurately with maximum deviation of 1.3 % and high correlation coefficient (R > 0.998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24. doi:10.1007/s10973-014-4328-8.

    Article  CAS  Google Scholar 

  2. Hemmat Esfe M, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Article  CAS  Google Scholar 

  3. Hemmat Esfe M, Saedodin S, Yan WM, Afrand M, Sina N, Study on thermal conductivity of water based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124(1):455–460. doi:10.1007/s10973-015-5104-0.

    Article  CAS  Google Scholar 

  4. Hemmat Esfe M, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg (OH)2-ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120:1145–9.

    Article  CAS  Google Scholar 

  5. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54(19–20):4410–28.

    Article  CAS  Google Scholar 

  6. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    Article  CAS  Google Scholar 

  7. Mahian O, Kianifar A, Sahin AZ, Wongwises S. Performance analysis of a minichannel-based solar collector using different nanofluids. Energy Convers Manag. 2014;88:129–38.

    Article  CAS  Google Scholar 

  8. Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  CAS  Google Scholar 

  9. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–6.

    Article  CAS  Google Scholar 

  10. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Transf. 2014;73:186–94.

    Article  Google Scholar 

  11. Celen A, Çebi A, Aktas M, Mahian O, Dalkilic AS, Wongwises S. A review of nanorefrigerants: flow characteristics and applications. Int J Refrig. 2014;44:125–40.

    Article  CAS  Google Scholar 

  12. Chandrasekar M, Suresh S, Senthilkumar T. Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids—a review. Renew Sustain Energy Rev. 2012;16(6):3917–38.

    Article  CAS  Google Scholar 

  13. M. Hemmat Esfe, S. Saedodin, O. Mahian, and S. Wongwises, Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports, J Therm Anal Calorim., 117 (2014), pp. 675–681.

  14. M. Hemmat Esfe, S. Saedodin, M. Bahiraei, D. Toghraie, O. Mahian, and S. Wongwises, “Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network,” J. Therm. Anal. Calorim., 118 (1) (2014) pp. 287–294.

  15. Barbés B, Páramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115(2):1883–91.

    Article  Google Scholar 

  16. Eslamloueyan R, Khademi MH. Estimation of thermal conductivity of pure gases by using artificial neural networks. Int J Therm Sci. 2009;48:1094–101.

    Article  CAS  Google Scholar 

  17. Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, Dahari M, Karimipour A. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.

    Article  CAS  Google Scholar 

  18. Hemmat Esfe M, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S, Goodarzi M. Modeling of thermal conductivity of ZnO–EG using experimental data and ANN methods. Int CommunHeat Mass Transf. 2015;63:35–40.

    Article  CAS  Google Scholar 

  19. M. Hemmat Esfe, S. Saedodin, N. Sina, and M. Afrand, Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid, Int. Commun. Heat Mass Transf., doi:10.1016/j.icheatmasstransfer.2015.06.013.

  20. Hemmat Esfe M, Saedodin S, Biglari M, Rostamian H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int Commun Heat Mass Transf. 2015;69:29–33.

    Article  CAS  Google Scholar 

  21. Karimi H, Yousefi F. Application of artificial neural network–genetic algorithm (ANN–GA) to correlation of density in nanofluids. Fluid Phase Equilib. 2012;336:79–83.

    Article  CAS  Google Scholar 

  22. Sadollah A, Ghadimi A, Metselaar IH, Bahreininejad A. Prediction and optimization of stability parameters for titanium dioxide nanofluid using response surface methodology and artificial neural networks. Sci Eng Compos Mater. 2013;20:319–30.

    Article  CAS  Google Scholar 

  23. S. Haykin, “Adaptive filters,” Signal Process. Mag., vol. 6, 1999.

  24. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431–41.

    Article  Google Scholar 

  25. Hemmat Esfe M, Saedodin S, Akbari M, Karimipour A, Afrand M, Wongwises S, Safaei MR, Dahari M. Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid. Int Commun Heat Mass Transf. 2015;65:47–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the assistance provided by the nanofluid Laboratory of Semnan university science and technology Park for providing necessary instrumentation to carry out the sample preparation and helping in the analysis of samples to complete the article in time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hemmat Esfe or Hadi Rostamian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Rostamian, H., Toghraie, D. et al. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim 126, 643–648 (2016). https://doi.org/10.1007/s10973-016-5506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5506-7

Keywords

Navigation