Skip to main content
Log in

Thermogravimetric and kinetic analysis of the decomposition of solid recovered fuel from municipal solid waste

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of a solid recovered fuel has been studied using thermogravimetry, in order to get information about the main steps in the decomposition of such material. The study comprises two different atmospheres: inert and oxidative. The kinetics of decomposition is determined at three different heating rates using the same kinetic constants and model for both atmospheres at all the heating rates simultaneously. A good correlation of the TG data is obtained using three nth-order parallel reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blumenthal KB, L. (Eurostat). Waste indicators on generation and landfilling measuring sustainable development 2004–2010. Environment and Energy; 2013.

  2. Eurostat. Waste statistics; 2013. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Waste_statistics.

  3. Rowell RM, Rowell JK, Young RA. Paper and composites from agrobased resources. Boca Raton: CRC Press; 1996.

  4. TAPPI. a-, b- and g-cellulose in pulp. Atlanta: TAPPI Press; 1998.

    Google Scholar 

  5. Caballero JA, Conesa JA. Mathematical considerations for nonisothermal kinetics in thermal decomposition. J Anal Appl Pyrolysis. 2005;73(1):85–100.

    Article  CAS  Google Scholar 

  6. Várhegyi G, Szabó P, Jakab E, Till F. Least squares criteria for the kinetic evaluation of thermoanalytical experiments. Examples from a char reactivity study. J Anal Appl Pyrolysis. 2001;57(2):203–22.

    Article  Google Scholar 

  7. Conesa JA, Caballero JA, Marcilla A, Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim Acta. 1995;254(C):175–92.

    Article  CAS  Google Scholar 

  8. Caballero JA, Conesa JA, Font R, Marcilla A. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrolysis. 1997;42(2):159–75.

    Article  CAS  Google Scholar 

  9. Suriapparao DV, Ojha DK, Ray T, Vinu R. Kinetic analysis of co-pyrolysis of cellulose and polypropylene. J Therm Anal Calorim. 2014;117(3):1441–51.

    Article  CAS  Google Scholar 

  10. Caballero JA, Font R, Marcilla A, Conesa JA. New kinetic model for thermal decomposition of heterogeneous materials. Ind Eng Chem Res. 1995;34(3):806–12.

    Article  CAS  Google Scholar 

  11. Conesa JA, Font R, Fullana A, Caballero JA. Kinetic model for the combustion of tyre wastes. Fuel. 1998;77(13):1469–75.

    Article  CAS  Google Scholar 

  12. Aracil I, Font R, Conesa JA. Thermo-oxidative decomposition of polyvinyl chloride. J Anal Appl Pyrolysis. 2005;74(1–2):215–23.

    Article  CAS  Google Scholar 

  13. Jauhiainen J, Conesa JA, Font R, Martin-Gullon I. Kinetics of the pyrolysis and combustion of olive oil solid waste. J Anal Appl Pyrolysis. 2004;72(1):9–15.

    Article  CAS  Google Scholar 

  14. Font R, Fullana A, Conesa JA, Llavador F. Analysis of the pyrolysis and combustion of different sewage sludges by TG. J Anal Appl Pyrolysis. 2001;58–59:927–41.

    Article  Google Scholar 

  15. Várhegyi G, Antal MJ Jr, Jakab E, Szabó P. Kinetic modeling of biomass pyrolysis. J Anal Appl Pyrolysis. 1997;42(1):73–87.

    Article  Google Scholar 

  16. Aracil I, Font R, Conesa JA, Fullana A. TG–MS analysis of the thermo-oxidative decomposition of polychloroprene. J Anal Appl Pyrolysis. 2007;79(1–2):327–36.

    Article  CAS  Google Scholar 

  17. Conesa JA, Moltá J, Font R, Egea S. Polyvinyl chloride and halogen-free electric wires thermal decomposition. Ind Eng Chem Res. 2010;49(22):11841–7.

    Article  CAS  Google Scholar 

  18. Zanzi R, Sjöström K, Björnbom E. Rapid high-temperature pyrolysis of biomass in a free-fall reactor. Fuel. 1996;75(5):545–50.

    Article  CAS  Google Scholar 

  19. Várhegyi G, Chen H, Godoy S. Thermal decomposition of wheat, oat, barley, and brassica carinata straws: a kinetic study. Energy Fuels. 2009;23(2):646–52.

    Article  Google Scholar 

  20. Várhegyi G, Czégény Z, Jakab E, McAdam K, Liu C. Tobacco pyrolysis. Kinetic evaluation of thermogravimetric-mass spectrometric experiments. J Anal Appl Pyrolysis. 2009;86(2):310–22.

    Article  Google Scholar 

  21. Shafizadeh F, Sekiguchi Y. Oxidation of chars during smoldering combustion of cellulosic materials. Combust Flame. 1984;55(2):171–9.

    Article  CAS  Google Scholar 

  22. Pitman WD, Soltes EJ, Holt EC. Mannose in the holocellulose of Panicum coloratum. Phytochemistry. 1981;20(5):1129–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support for this work provided by PROMETEOII/2014/007 of Generalitat Valenciana (Spain) and CTQ2013-41006-R (Spanish Ministry of Economy and Competitiveness). The authors are also grateful to CEMEX ESPAÑA, S.A. for supplying the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Conesa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conesa, J.A., Rey, L. Thermogravimetric and kinetic analysis of the decomposition of solid recovered fuel from municipal solid waste. J Therm Anal Calorim 120, 1233–1240 (2015). https://doi.org/10.1007/s10973-015-4396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4396-4

Keywords

Navigation