Skip to main content
Log in

Physical properties (thermal, thermomechanical, magnetic, and adhesive) of some smart orthodontic wires

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal, thermomechanical, and caloric properties of commercial orthodontic wires (produced by Natural Orthodontics Corp., USA) with cylindrical and rectangular geometry were studied. Depending on the applied forces, there were identified the range of elasticity, the elasticity–viscoelasticity coexistence domain and the domain in which a maximum force of 18 N is applied, for the orthodontic wires. When increasing the thickness of orthodontic wires, deformation decreases. The Controlled Force Module, in the tension mode, was used for the determination of the orthodontic wires elongation at application of the stretching forces from 0 to 13 N, at 35 °C, maintaining each static force value for 3 min. The increase in the cross-sectional area of the orthodontic wires disfavors the process of elongation of the sample, at the same applied static force. Using the Multi-Frequency–Strain–Stress modulus, in the tension mode, DMA cyclic heating–cooling measurements were performed. The measured physical quantities for orthodontic wires were Storage Modulus, Loss Modulus, Tanδ and Stiffness, at heating and cooling. Thus, the characteristic temperatures of the phase transitions (As, Af, Ms, Mf), of all the studied orthodontic wires were identified. Also, the values of the elasticity modulus (Young’s Modulus) of the orthodontic wires were calculated at 35 °C. With the DSC Q200 device, using temperature-modulated differential scanning calorimetry method, a multi-step temperature variation program, was applied to a rectangular wire, in three stages (cooling–heating–cooling). Through the interpretation of heat fluxes (reversible, irreversible and total), the phase transitions in the formation of martensite, austenite, but also of the rombohedral phase (R-phase), were identified. Formations of austenite and martensite were also evidenced by the classical DSC method, but the classical DSC method also enabled the R-phase identification. The adherence of some food dyes on the orthodontic wires, as well as the modification of the surface roughness of the orthodontic wire after the deposition of the food dye, was also studied. By magnetic measurements, it was established that the orthodontic wires had paramagnetic properties at room temperature, and nitinol was a mixture of 49.2% austenite and 50.8% martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Berzinsa DW, Roberts HW. Phase transformation changes in thermocycled nickel–titanium orthodontic wires. Dent Mater. 2010;26:666–74.

    Article  CAS  Google Scholar 

  2. Buehler WJ, Wiley RC. Nickel-base alloys. United States Patent 3,174,851; March 23, 1965.

  3. Buehler WJ, Wiley RC. TiNi-ductile intermetallic compound. Am Soc Met Trans Q. 1962;55:269–76.

    CAS  Google Scholar 

  4. Andreasen GF, Hilleman TB. An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. J Am Dent Assoc. 1971;82:1373–5.

    Article  CAS  PubMed  Google Scholar 

  5. Andreasen GF, Morrow RE. Laboratory and clinical analyses of nitinol wire. An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. Am J Orthod. 1978;73:142–51.

    Article  CAS  PubMed  Google Scholar 

  6. Degeratu S, Rotaru P, Manolea G, Manolea HO, Rotaru A. Thermal characteristics of Ni–Ti SMA (shape memory alloy) actuators. J Therm Anal Calorim. 2009;97:695–700.

    Article  CAS  Google Scholar 

  7. Degeratu S, Rotaru P, Rizescu S, Bîzdoacă NG. Thermal study of a shape memory alloy (SMA) spring actuator designed to insure the motion of a barrier structure. J Therm Anal Calorim. 2013;111:1255–62.

    Article  CAS  Google Scholar 

  8. Liaw Y-C, Su Y-YM, Lai Y-L, Lee S-Y. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis. Am J Orthod Dentofacial Orthop. 2007;131:578.e12-8.

    Article  PubMed  Google Scholar 

  9. Iijima M, Brantley WA, Guo WH, Clark WAT, Yuasa T, Mizoguchi I. X-ray diffraction study of low-temperature phase transformations in nickel–titanium orthodontic wires. Dent Mater. 2008;24:1454–60.

    Article  CAS  PubMed  Google Scholar 

  10. Wang XB, Verlinden B, van Humbeeck J. R-phase transformation in NiTi alloys. Mater Sci Technol. 2014;30:1517–29.

    Article  CAS  Google Scholar 

  11. Wang X, Li C, Verlinden B, van Humbeeck J. Effect of grain size on aging microstructure as reflected in the transformation behavior of a low-temperature aged Ti–50.8 at.% Ni alloy. Scr Mater. 2013;69:545–8.

    Article  CAS  Google Scholar 

  12. Brantley WA. Orthodontic wires. In: Orthodontic materials: scientific and clinical aspects. Thieme, Stuttgart, 2001.

  13. Duerig TW, Melton KN, Stockel D, Wayman CM, editors. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann; 1990.

    Google Scholar 

  14. Gil FJ, Planell JA. Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. J Biomed Mater Res. 1999;48:682–8.

    Article  CAS  PubMed  Google Scholar 

  15. Xu H, Müller I. Effects of mechanical vibration, heat treatment and ternary addition on the hysteresis in shape memory alloys. J Mater Sci. 1991;26:1473–7.

    Article  CAS  Google Scholar 

  16. Otsubo K. Development of the super-elastic Ti-Ni alloy wire appropriate to the oral environment. J Jpn Orthod Soc. 1994;53:641–50.

    Google Scholar 

  17. Thayer TA, Bagby MD, Moore RN, DeAngelis RJ. X-ray diffraction of nitinol orthodontic arch wires. Am J Orthod Dentofacial Orthop. 1995;107:604–12.

    Article  CAS  PubMed  Google Scholar 

  18. Iijima M, Ohno H, Kawashima I, Endo K, Brantley WA, Mizoguchi I. Micro X-ray diffraction study of superelastic nickel–titanium orthodontic wires at different temperatures and stresses. Biomaterials. 2002;23:1769–74.

    Article  CAS  PubMed  Google Scholar 

  19. Iijima M, Brantley WA, Kawashima I, Ohno H, Guo W, Yonekura Y. Micro X-ray diffraction observation of nickel–titanium orthodontic wires in simulated oral environment. Biomaterials. 2004;25:171–6.

    Article  CAS  PubMed  Google Scholar 

  20. Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed. Upper Saddle River: Prentice-Hall; 2001.

    Google Scholar 

  21. Yoneyama T, Doi H, Hamanaka H, Okamoto Y, Mogi M, Miura F. Super-elasticity and thermal behavior of Ni–Ti alloy orthodontic arch wires. Dent Mater J. 1992;11:1–10.

    Article  CAS  PubMed  Google Scholar 

  22. Fletcher ML, Miyake S, Brantley WA, Culbertson BM. DSC and bending studies of a new shape-memory orthodontic wire. J Dent Res. 1992;71:169.

    Google Scholar 

  23. Bradley TG, Brantley WA, Culbertson BM. Differential scanning calorimetry (DSC) analyses of superelastic and nonsuperelastic nickel–titanium orthodontic wires. Am J Orthod Dentofacial Orthop. 1996;109:589–97.

    Article  CAS  PubMed  Google Scholar 

  24. Dogan A, Arslan H. Effect of ball-milling conditions on microstructure during production of Fe–20Mn–6Si–9Cr shape memory alloy powders by mechanical alloyng. J Therm Anal Calorim. 2012;109:933–8.

    Article  CAS  Google Scholar 

  25. Brantley WA, Iijima M, Grentzer TH. Temperature-modulated DSC study of phase transformations in nickel–titanium orthodontic wires. Thermochim Acta. 2002;392–3:329–37.

    Article  Google Scholar 

  26. Brantley WA, Iijima M, Grentzer TH. Temperature-modulated DSC provides new insight about transformations in nickel–titanium wires. Am J Orthod Dentofacial Orthop. 2003;124:387–94.

    Article  PubMed  Google Scholar 

  27. Sauerbrunn S, Crowe B, Reading M. Modulated differential scanning calorimetry. Am Lab August. 1992;24:44–7.

    CAS  Google Scholar 

  28. Reading M, Hahn BK, Crowe BS. Method and apparatus for modulated differential scanning calorimetry. US Patent 5,346,306; September 13, 1994.

  29. Razali MF, Mahmud AS, Mokhtar N. Force delivery of NiTi orthodontic arch wire at different magnitude of deflections and temperatures: a finite element study. J Mec Behavior Biomed Mat. 2018;77:234–41.

    Article  CAS  Google Scholar 

  30. Fourie Z, Ozcan M, Sandham A. Effect of dental arch convexity and type of archwire on frictional forces. Am J Orthod Dentofacial Orthop. 2009;136:14.e1-7.

    Google Scholar 

  31. Matarese G, Nucera R, Militi A, Mazza M, Portelli M, Festa F, Cordasco G. Evaluation of frictional forces during dental alignment: an experimental model with 3 nonleveled brackets. Evaluation of frictional forces during dental alignment: an experimental model with 3 nonleveled brackets. Am J Orthod Dentofacial Orthop. 2008;133:708–15.

    Article  PubMed  Google Scholar 

  32. Juvvadi SR, Kailasam V, Padmanabhan S, Chitharanjan AB. Physical, mechanical, and flexural properties of 3 orthodontic wires: an in vitro study. Am J Orthod Dentofacial Orthop. 2010;138:623–30.

    Article  PubMed  Google Scholar 

  33. Pompei-Reynolds RC, Kanavakis G. Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop. 2014;146:215–26.

    Article  PubMed  Google Scholar 

  34. Pun DK, Berzins DW. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel–titanium-based orthodontic wires at various temperatures. Dent Mater. 2008;24:221–7.

    Article  CAS  PubMed  Google Scholar 

  35. Naceur IB, Char A, Bouraoui T, Elleuch K. Finite element modelling of superelastic nickel–titanium orthodontic wires. J Biomech. 2014;47:3630–8.

    Article  PubMed  Google Scholar 

  36. Lobo PS, Almeida J, Guerreiro L. Shape memory alloys behaviour: a review. Procedia Eng. 2015;114:776–83.

    Article  CAS  Google Scholar 

  37. Torra V, Tachoire H. Improvements in calorimetry and thermal analysis applied to shape-memory alloys. J Therm Anal. 1990;36:1545–77.

    Article  CAS  Google Scholar 

  38. Fan J-T, Yan Y-M. Gradient microstructure with martensitic transformation for developing a large-size metallic alloy with enhanced mechanical properties. Mat Des. 2018;143:20–6.

    CAS  Google Scholar 

  39. Verstrynge A, Van Humbeeck J, Willems G. In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofacial Orthop. 2006;130:460–70.

    Article  PubMed  Google Scholar 

  40. Mikulewicz M, Gronostajski Z, Wielgus A, Chojnacka K. Transparent orthodontic archwires: a systematic literature review. Arch Civ Mech Eng. 2017;17:651–7.

    Article  Google Scholar 

  41. Yamaguchi M, Yasuhiro Tanimoto Y, Minami N, Inami T, Kasai K. The effects of glass fiber-reinforced plastic for orthodontic wire on the malocclusion of mild anterior crowding during the initial leveling stage: a typodont experimental study. Orthod Waves. 2017;76:73–80.

    Article  Google Scholar 

  42. Segal N, Hell J, Berzins DW. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire. Am J Orthod Dentofac Orthop. 2009;135:764–70.

    Article  Google Scholar 

  43. Liu J-K, Liu I-H, Liu C, Chang C-J, Kung K-C, Liu Y-T, Lee T-M, Jou J-L. Effect of titanium nitride/titanium coatings on the stress corrosion of nickel–titanium orthodontic archwires in artificial saliva. Appl Surf Sci. 2014;317:974–81.

    Article  CAS  Google Scholar 

  44. Sherief DI, Abbas NH. The effect of food simulating liquids on the static frictional forces and corrosion activity of different types of orthodontic wires. J World Fed Orthod. 2017;6:165–70.

    Article  Google Scholar 

  45. Gil FJ, Cenizo M, Espinar E, Rodriguez A, Rúperez E, Manero JM. NiTi superelastic orthodontic wires with variable stress obtained by ageing treatments. Mater Lett. 2013;104:5–7.

    Article  CAS  Google Scholar 

  46. Yates SJ, Kalamkarov AL. Experimental study of helical shape memory alloy actuators: effects of design and operating parameters on thermal transients and stroke. Metals. 2013;3:123–49.

    Article  CAS  Google Scholar 

  47. wikipedia.org/wiki/Dynamic_mechanical_analysis.

  48. Meyers MA, Chawla KK. Mechanical behavior of materials. Upper Saddle River: Prentice-Hall; 1999.

    Google Scholar 

  49. Da Silva NJ, Grassi END, De Araujo CJ. Dynamic properties of NiTi shape memory alloy and classic structural materials: a comparative analysis. Mater Sci Forum. 2010;643:37–41.

    Article  CAS  Google Scholar 

  50. wikipedia.org/wiki/Dynamic_modulus.

  51. Beer FP, Johnston ER, Dewolf J, Mazurek D. Mechanics of Materials. New York: McGraw Hill; 2009. ISBN 978-0-07-015389-9.

    Google Scholar 

  52. Zanaboni E. One way and two way–shape memory effect: Thermomechanical characterization of Ni–Ti wires. PhD Thesis, 2008, University of Pavia, Faculty of Engineering.

  53. Ahlers M. The martensitic transformation. Rev Matér. 2004;9(3):169–83.

    Google Scholar 

  54. Porter DA, Easterling KE. Phase transformations in metals and alloys. New York: Chapman & Hall; 1992. p. 172.

    Book  Google Scholar 

  55. Baumart F. Stiffness—an unknown word of mechanical science? INJURY. 2000;31(Supplement 2):14–23.

    Google Scholar 

  56. Brantley WA, Jijima M, Grentzer TH. Temperature-modulated DSC study of phase transformations in nickel–titanium orthodontic wires. Termochim Acta. 2002;392–393:329–37.

    Article  Google Scholar 

  57. Ren C-C, Bai Y-X, Wang H-M, Zheng Y-F, Li S. Phase transformation analysis of varied nickel-titanium orthodontic wires. Chin Med J. 2008;12:2060–4.

    Google Scholar 

  58. Rotaru A. Discriminating within the kinetic models for heterogeneous processes of materials by employing a combined procedure under TKS-SP 2.0 software. J Term Anal Calorim. 2016;126:919–32.

    Article  CAS  Google Scholar 

  59. Rotaru A, Gosa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Term Anal Calorim. 2008;94:367–71.

    Article  CAS  Google Scholar 

  60. Rotaru A, Gosa M. Computational thermal and kinetic analysis. Complete standard procedure to evaluate the kinetic triplet form non-isothermal data. J Term Anal Calorim. 2009;97:421–6.

    Article  CAS  Google Scholar 

  61. Rotaru A. Thermal and kinetic study of hexagonal boric acid vs. triclinic boric acid in air flow. J Term Anal Calorim. 2017;127:755–63.

    Article  CAS  Google Scholar 

  62. Rotaru A. Thermal analysis and kinetic study of Petroşani bituminous coal from Romania in comparison with a sample of Ural bituminous coal. J Term Anal Calorim. 2012;110:1283–91.

    Article  CAS  Google Scholar 

  63. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the appropriateness of the food azo-colours Tartrazine (E 102), Sunset Yellow FCF (E 110), Carmoisine (E 122), Amaranth (E 123), Ponceau 4R (E 124), Allura Red AC (E 129), Brilliant Black BN (E 151), Brown FK (E 154), Brown HT (E 155) and Litholrubine BK (E 180) for inclusion in the list of food ingredients set up in Annex IIIa of Directive 2000/13/EC. EFSA J. 2010;8(10):1778.

  64. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of Tartrazine (E 102), on request from the European Commission. EFSA J. 2009;7(11):1331.

  65. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of Sunset Yellow FCF (E 110) as a food additive, on request from the European Commission. EFSA J. 2009;7(11):1330.

  66. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of Azorubine/Carmoisine (E 122) as a food additive, on request from the European Commission. EFSA J. 2009;7(11):1332.

  67. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of Ponceau 4R (E 124) as a food additive, on request from the European Commission. EFSA J. 2009;7(11):1328.

  68. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of Brown HT (E 155) as a food additive. EFSA J. 2010;8(3):1536.

  69. Desjonquères MC, Spanjaard D. Concepts in physics surface. Berlin: Springer; 1996.

    Book  Google Scholar 

  70. Krishnan M, Seema S, Tiwari B, Sharma HS, Londhe S, Arora V. Surface characterization of nickel titanium orthodontic arch wires. Med J Armed Forces India. 2015;71:S340–5.

    Article  PubMed  Google Scholar 

  71. Panaiotu CG. Geomagnetism. Bucharest: Ars Docendi House; 2006.

    Google Scholar 

  72. Dunlop D, Ozdemir O. Rock Magnetism: Fundamentals and Frontiers. Cambridge: Cambridge University Press; 1997.

    Book  Google Scholar 

  73. Field LD, Sternhell S. Analytical NMR. New York: Wiley; 1989.

    Google Scholar 

  74. Ravindran KV. Role of magnets in orthodontics—a review. Indian J Dent. 2011;2:147–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rotaru.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florian, G., Gabor, A.R., Nicolae, C.A. et al. Physical properties (thermal, thermomechanical, magnetic, and adhesive) of some smart orthodontic wires. J Therm Anal Calorim 134, 189–208 (2018). https://doi.org/10.1007/s10973-018-7580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7580-5

Keywords

Navigation