Skip to main content
Log in

Catalytic effect of lead oxide nano- and microparticles on thermal decomposition kinetics of energetic compositions containing TEGDN/NC/DAG

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The catalytic effect of lead oxide nano- and microparticles (PbO) on the thermal behavior and decomposition kinetics of energetic formulations composed of nitrocellulose (NC), triethyleneglycol dinitrate (TEGDN) and diaminoglyoxime (DAG) was investigated by simultaneous thermogravimetric analysis and differential scanning calorimetry. The results show that lead oxide nano- and microparticles could significantly alter thermal pattern of the studied energetic compositions. The effect of lead oxide content on thermal behavior of energetic compositions was also studied, and the results revealed that addition of different amounts of lead oxide caused to shift in the DSC peaks. Moreover, the catalyst decreases activation energy of the decomposition stage of energetic composition at about 20–40 kJ mol−1. However, the catalyst enhances decomposition temperature of TEGDN/NC/DAG energetic compositions. By the aid of DSC data resulted by non-isothermal methods, the thermokinetic parameters such as activation energy (E a), frequency factor (A), the critical ignition temperature of thermal explosion, the self-accelerating decomposition temperature (T SADT) and also thermodynamic parameters of the studied energetic compositions were calculated and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kanno H, Yamamoto H. (1995) US Patent 5476967.

  2. Takahashi PM, Netto AVG, Mauro AE, Frem RCG. Thermal study of nickel(II) pyrazolyl complexes. J Therm Anal Calorim. 2005;79:335–8.

    Article  CAS  Google Scholar 

  3. Stoner CE Jr, Brill TB. Thermal decomposition of energetic materials 46. The formation of melamine-like cyclic azines as a mechanism for ballistic modification of composite propellants by DCD, DAG, and DAF. J Combust Flame. 1991;83:302–8.

    Article  CAS  Google Scholar 

  4. Talawar MB, Makashir PS, Nair JK, Pundalik SM, Mukundan T, Asthana SN, Singh SN. J Hazard Mater. 2005;A 125:17–22.

    Article  Google Scholar 

  5. Williams GK, Palopoli SF, Brill TB. Thermal decomposition of energetic materials 65. Conversion of insensitive explosives (NTO, ANTA) and related compounds to polymeric melon-like cyclic azine burn-rate suppressants. J Combust Flame. 1994;98:197–204.

    Article  Google Scholar 

  6. Ravanbod M, Pouretedal HR. Catalytic effect of Fe2O3, Mn2O3, and TiO2 nanoparticles on thermal decomposition of potassium nitrate. J Therm Anal Calorim. 2016;124:1091–8.

    Article  CAS  Google Scholar 

  7. Yi JH, Zhao FQ, Hong WL, Xu SY, Hu RZ, Chen ZQ, Zhang LY. Effects of Bi-NTO complex on thermal behaviors, nonisothermal reaction kinetics and burning rates of NG/TEGDN/NC propellant. J Hazard Mater. 2010;176:257–61.

    Article  CAS  Google Scholar 

  8. Nayak H, Jena AK. Catalyst effect of transition metal nano oxides on the decomposition of lanthanum oxalate hydrate: a thermogravimetric study. Int J Sci Res (IJSR). 2014;3:381–8.

    Google Scholar 

  9. Martins S, Fernandes JB, Mojumdar SC. Catalysed thermal decomposition of KClO3 and carbon gasification. J Therm Anal Cal. 2015;119:831–5.

    Article  CAS  Google Scholar 

  10. Kapoor IPS, Srivastava P, Singh G. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2009;34:351–6.

    Article  CAS  Google Scholar 

  11. Mahinroosta M. Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decomposition of ammonium perchlorate. J Nanostruct Chem. 2013;3:1–6.

    Article  Google Scholar 

  12. Shahidzadeh M, Shabihi P, Pourmortazavi SM. Sonochemical preparation of copper(II) chromite nanocatalysts and particle size optimization via Taguchi method. J Inorg Organomet Polym. 2015;25:986–94.

    Article  CAS  Google Scholar 

  13. Shamsipur M, Pourmortazavi SM, Roushani M, Miran Beigi AA. Thermal behavior and non-isothermal kinetic studies on titanium hydride-fueled binary pyrotechnic compositions. Combust Sci Technol. 2013;185:122–33.

    Article  CAS  Google Scholar 

  14. Rogers RN, Smith LC. Estimation of preexponential factor from thermal decomposition curve of a weighed sample. J Anal Chem. 1967;39:1024.

    Article  CAS  Google Scholar 

  15. Mohan Murali BK, Ganesan V, Rao KB, Mohan VK. Hazard characteristics of isosorbide dinitrate-lactose mixtures. J Hazard Mater. 1979;3(2):177–82.

    Article  Google Scholar 

  16. Sunitha M, Reghunadhan Nair CP, Krishnan K, Ninan KN. Kinetics of Alder-ene reaction of Tris (2-allylphenoxy) triphenoxycyclotriphosphazene and bismaleimides-a DSC study. Thermochim Acta. 2001;374:159–69.

    Article  CAS  Google Scholar 

  17. Turcotte R, Vachon M, Kwok QSM, Wang R, Jones DEG. Thermal study of HNIW (CL-20). Thermochim Acta. 2005;433:105–15.

    Article  CAS  Google Scholar 

  18. Pourmortazavi SM, Sadri M, Rahimi-Nasrabadi M, Shamsipur M, Jabbarzade Y, Shafaghi Khalaki M, Abdollahi M, Shariatinia Z, Kohsari I, Atifeh SM. Thermal decomposition kinetics of electrospun azidodeoxy cellulose nitrate and polyurethane nanofibers. J Therm Anal Cal. 2015;119:281–90.

    Article  CAS  Google Scholar 

  19. Azimfar F, Kohsari I, Pourmortazavi SM. Investigation on decomposition kinetic and thermal stability of metallocene catalysts. J Inorg Organomet Polym. 2009;19:181–6.

    Article  CAS  Google Scholar 

  20. Om Reddy G, Srinivasa Rao A. Stability studies on pentaerytritol tetranitrate. Propellants Explos Pyrotech. 1992;17:307.

    Article  Google Scholar 

  21. Miran Beigi AA, Abdouss M, Yousefi M, Pourmortazavi SM, Vahid A. Investigation on physical and electrochemical properties of three imidazolium based ionic liquids (1-hexyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-butyl-3-methylimidazolium methylsulfate). J Mol Liq. 2013;177:361–8.

    Article  CAS  Google Scholar 

  22. Mirzaei M, Lippolis V, Carla Aragoni M, Ghanbari M, Shamsipur M, Meyer F, Demeshko S, Pourmortazavi SM. Extended structures in copper(II) complexes with 4-hydroxypyridine-2,6-dicarboxylate and pyrimidine derivative ligands: x-ray crystal structure, solution and magnetic studies. Inorg Chim Acta. 2014;418:126–35.

    Article  CAS  Google Scholar 

  23. Shamsipur M, Miran Beigi AA, Teymouri M, Pourmortazavi SM, Irandoust M. Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl) imide. J Mol Liq. 2010;157:43–50.

    Article  CAS  Google Scholar 

  24. Singh G, Kapoor IPS, Mannan SM, Kaur J. Studies on energetic compounds, Part 8: thermolysis of salts of HNO3 and HClO4. J Hazard Mater. 2000;A79:1–18.

    Article  Google Scholar 

  25. Zeman S. New aspects of initiation reactivities of energetic materials demonstrated on nitramines. J Hazard Mater. 2006;A132:155–64.

    Article  Google Scholar 

  26. Keshavarz MH. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater. 2009;162:1557–62.

    Article  CAS  Google Scholar 

  27. Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, Besharati-Seidani A, Javidan A. Role of metal oxide nanomaterials on thermal stability of 1,3,6-trinitrocarbazole. Propellants Explos Pyrotech. 2016;41:912–8.

    Article  CAS  Google Scholar 

  28. Nicholas A, Alexander J, Michael P. (2012) US Patent 20120130115A1.

  29. Gouranlou F, Kohsari I. Synthesis and characterization of 1,2,4-butanetrioltrinitrate. J Asian J Chem. 2010;22:4221–8.

    CAS  Google Scholar 

  30. Park DJ, Stern AG, Willer RL. A convenient laboratory preparation of cyanogen. Synth Commun. 1990;20:2901–6.

    Article  CAS  Google Scholar 

  31. Karami H, Karimi MA, Haghdar S, Sadeghi A, Mir-Ghasemi R, Mahdi-Khani S. Synthesis of lead oxide nanoparticles by Sonochemical method and its application as cathode and anode of lead-acid batteries. J Mater Chem Phys. 2008;108(2):337–44.

    Article  CAS  Google Scholar 

  32. Karami H, Karimi MA, Haghdar S. Synthesis of uniform nano-structured lead oxide by sonochemical method and its application as cathode and anode of lead-acid batteries. Mater Res Bull. 2008;43(11):3054–65.

    Article  CAS  Google Scholar 

  33. Fazli Y, Pourmortazavi SM, Kohsari I, Sadeghpur M. Electrochemical synthesis and structure characterization of nickel sulfide nanoparticles. J Mater Sci Semicond Process. 2014;27:362–7.

    Article  CAS  Google Scholar 

  34. Pourmortazavi SM, Farhadi K, Mirzajani V, Mirzajani S, Kohsari I. Study on the catalytic effect of diaminoglyoxime on thermal behaviors, non-isothermal reaction kinetics and burning rate of homogeneous double-base propellant. J Therm Anal Calorim. 2016;125:121128.

    Article  Google Scholar 

  35. Kubota N. Propellants and explosives, chapter 7. New York: Wiley; 2007. p. 195–8.

    Google Scholar 

  36. Preckel RF. Plateau ballistics in NC propellant. ARS J. 1961;31:1286–7.

    Google Scholar 

  37. Joshi AD, Singh H. Effect of certain lead and copper compounds as ballistic modifier for double base rocket propellants. J Energy Mater. 1992;10(4–5):299–309.

    Article  CAS  Google Scholar 

  38. Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  39. Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.

    Article  CAS  Google Scholar 

  40. Ma H-X, Song J-R, Hu R-Z. Non-isothermal kinetics of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex. Chin J Chem. 2003;21(12):1558–61.

    Article  CAS  Google Scholar 

  41. Hu R-Z, Chen S-P, Gao S-L, Zhao F-Q, Luo Y, Gao H-X, Shi Q-Z, Zhao H-A, Yao P, Li J. Thermal decomposition kinetics of Pb0.25Ba0.75(TNR)·H2O complex. J Hazard Mater. 2005;A117:103–10.

    Article  Google Scholar 

  42. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS. Investigation on decomposition kinetics and thermal properties of copper fueled pyrotechnic compositions. Combust Sci Technol. 2011;183:575–87.

    Article  CAS  Google Scholar 

  43. Ma H-X, Song J-R, Zhao F-Q, Hu RZ, Xiao H-M. Nonisothermal reaction kinetics and computational studies on the properties of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo [1, 3] onan-3,7-dione (TNPDU). J Chem Phys. 2007;A111:8642–9.

    Article  Google Scholar 

  44. Tompa AS, Boswell RF. Thermal stability of a plastic bonded explosive. Thermochim Acta. 2000;357–358:169–75.

    Article  Google Scholar 

  45. Criado JM, Perez-Maqueda LA, Sanchez-Jimenez PE. Dependence of the pre-exponential factor on temperature. J Therm Anal Calorim. 2005;82:671–5.

    Article  CAS  Google Scholar 

  46. Fathollahi M, Behnejad H. A comparative study of thermal behaviors and kinetics analysis of the pyrotechnic compositions containing Mg and Al. J Therm Anal Calorim. 2015;120:1483–92.

    Article  CAS  Google Scholar 

  47. ASTM E698. Test methods for Arrhenius kinetic constants for thermally unstable materials.

  48. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  49. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS, Atifeh SM. Effect of functional group on thermal stability of cellulose derivative energetic polymers. Fuel. 2012;95:394–9.

    Article  CAS  Google Scholar 

  50. Ma H, Yan B, Li Z, Guan Y, Song J, Xu K, et al. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO. DNAZ. J Hazard Mater. 2009;169:1068–73.

    Article  CAS  Google Scholar 

  51. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, et al. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93:143–52.

    Article  CAS  Google Scholar 

  52. Abusaidi H, Ghaieni HR, Pourmortazavi SM, Motamed-Shariati SH. Effect of nitro content on thermal stability and decomposition kinetics of nitro-HTPB. J Therm Anal Calorim. 2016;124:935–41.

    Article  CAS  Google Scholar 

  53. Pisharath S, Ang HG. Synthesis and thermal decomposition of GAP–Poly (BAMO) copolymer. Polym Degrad Stab. 2007;92(7):1365–77.

    Article  CAS  Google Scholar 

  54. Rocco J, Lima J, Frutuoso A, Iha K, Ionashiro M, Matos J, et al. Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim. 2004;75:551–7.

    Article  CAS  Google Scholar 

  55. Wan-Fen Pu, Liu Peng-Gang, Li Yi-Bo, Jin Fa-Yang, Liu Zhe-Zhi. Thermal characteristics and combustion kinetics analysis of heavy crude oil catalyzed by metallic additives. Ind Eng Chem Res. 2015;54:11525–33.

    Article  Google Scholar 

  56. Li Y, Chenxia K, Huang C, Cheng Y. Effect of MnC2O4 nanoparticles on the thermal decomposition of TEGDN/NC propellant. J Therm Anal Calorim. 2012;109:171–6.

    Article  CAS  Google Scholar 

  57. Shamsipur M, Pourmortazavi SM, Fathollahi M. Kinetic parameters of binary iron/oxidant pyrolants. J Energy Mater. 2012;30:97–106.

    Article  CAS  Google Scholar 

  58. Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, Jabbarzadeh Y, Javidan A. Effect of nanomaterials on thermal stability of 1,3,6,8-tetranitro carbazole. Cent Eur J Energy Mater. 2017;14:201–16.

    Article  Google Scholar 

  59. Eslami A, Hosseini SG, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat. 2009;65:269–74.

    Article  CAS  Google Scholar 

  60. Olszak-Humienik M, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344:73–9.

    Article  CAS  Google Scholar 

  61. Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, Hajimirsadeghi SS. Non-isothermal kinetic studies on thermal decomposition of energetic materials. J Therm Anal Calorim. 2012;110:857–63.

    Article  CAS  Google Scholar 

  62. Pickard JM. Critical ignition temperature. Thermochim Acta. 2002;392:37–40.

    Article  Google Scholar 

  63. Tonglai Z, Rongzu H, Yi X, Fuping L. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied Mahdi Pourmortazavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzajani, V., Farhadi, K. & Pourmortazavi, S.M. Catalytic effect of lead oxide nano- and microparticles on thermal decomposition kinetics of energetic compositions containing TEGDN/NC/DAG. J Therm Anal Calorim 131, 937–948 (2018). https://doi.org/10.1007/s10973-017-6666-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6666-9

Keywords

Navigation