Skip to main content
Log in

Numerical analysis on thermal characteristics of transpiration cooling with coolant phase change

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A numerical investigation of phase change transpiration cooling has been conducted in this work using the modified separate flow model, in which the effects of capillarity, non-isothermal characteristics in two-phase region and the local thermal non-equilibrium characteristics between the coolant and the matrix have been considered to describe the liquid coolant phase change and heat exchange process. The influences of thermal conductivity, porosity and sphere diameter of the porous matrix, main flow temperature and heat transfer coefficient at the hot surface on temperature and saturation distributions and temperature difference within the matrix have been investigated numerically. The results indicate that a higher coolant mass flow rate can delay liquid evaporation, increase the temperature gradient in superheated vapor region and decrease the solid temperature at the hot surface, but with an increase in main flow temperature or heat transfer coefficient at hot surface, the coolant temperature increases in liquid region and especially in superheated vapor region, and the solid temperature at the hot surface increases dramatically. The results also indicate that a higher solid conductivity corresponds to a higher temperature in liquid region and in nearly the whole superheated vapor region, but a slightly lower temperature at the hot surface. A special result has been obtained that with an increase in the porosity and sphere diameter the corresponding interface of liquid region moves leftwards with the two-phase region extended, and the coolant temperature decreases in two-phase region and superheated vapor region, while in liquid region firstly it decreases and then increases, as may be determined by both heat transfer and especially pressure drop which varies dramatically with porosity and sphere diameter. The thermal non-equilibrium characteristics have been analyzed, and the results show that it is obvious at the cold surface, at the hot surface and at the beginning and the ending of two-phase region, and it is most obvious near the ending of two-phase region, and the coolant temperature is higher than the solid temperature at the beginning of two-phase region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ε :

Porosity

s :

Liquid saturation

ρ :

Density (kg m−3)

c p :

Specific heat capacity (J kg−1 K−1)

u :

Velocity (m s−1)

t :

Time (s)

h :

Specific enthalpy (J kg−1)

Q sf :

Convection or boiling heat flow (J m−3 s−1)

Q boil :

Boiling heat flow (J m−3 s−1)

Q :

Volumetric heat source (J m−3 s−1)

T :

Temperature (K)

σ :

Interfacial tension (N m−1)

J :

Capillary J-function

K r :

Relative permecapacity

μ :

Dynamic viscosity (kg m−1 s−1)

K :

Permecapacity

k :

Heat conductivity (W m−1 K−1)

Nu :

Nusselt number

Re p :

Reynolds number in porous media

Pr :

Prandtl number

d p :

Hydraulic diameter (m)

α sf :

Aspect ratio

q :

Heat flux (J m−2 s−1)

h lg :

Latent heat (J kg−1)

h sv :

Heat transfer coefficient of vapor (W m−2 K−1)

h sl :

Heat transfer coefficient of liquid (W m−2 K−1)

g :

Acceleration of gravity (m s−2)

h c :

Heat transfer coefficient at the cool surface (W m−2 K−1)

h hot :

Heat transfer coefficient at the hot surface (W m−2 K−1)

T hot :

Main fluid temperature at the hot surface (K)

s :

Solid

r :

Relative

f :

Fluid

l :

Liquid

v :

Vapor

p :

Pressure

sat:

Saturated

eff:

Effective

References

  1. Alomar OR, Mendes MAA, Trimis D, Ray S. Numerical simulation of complete liquid vapour phase change process inside porous media using smoothing of diffusion coefficient. Int J Therm Sci. 2014;86:408–20.

    Article  Google Scholar 

  2. Alomar OR, Mendes MAA, Trimis D, Ray S. Simulation of complete liquid vapour phase change process inside porous evaporator using local thermal non-equilibrium model. Int J Therm Sci. 2015;94:228–41.

    Article  Google Scholar 

  3. Ray S, Alomar OR. Simulation of liquid–vapour phase change process inside porous media using modified enthalpy formulation. Int J Therm Sci. 2016;105:123–36.

    Article  Google Scholar 

  4. Peralta M, Mendez F, Bautista O. Phase-change transpiration cooling in a porous medium: determination of the liquid/two-phase/vapor interfaces as a problem of eigenvalues. Transp Porous Med. 2016;112:167–87.

    Article  CAS  Google Scholar 

  5. Mashaei PR, Shahryari M, Madani S. Numerical hydrothermal analysis of water–Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. J Therm Anal Calorim. 2016;126:891–904.

    Article  CAS  Google Scholar 

  6. Mottet L, Prat M. Numerical simulation of heat and mass transfer in bidispersed capillary structures: application to the evaporator of a loop heat pipe. Appl Therm Eng. 2016;102:770–84.

    Article  Google Scholar 

  7. Liu X, Chen Y, Shi M. Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs). Int J Therm Sci. 2013;65:224–33.

    Article  Google Scholar 

  8. Hanlon MA, Ma HB. Evaporation heat transfer in sintered porous media. J Heat Transf. 2003;125:644–52.

    Article  Google Scholar 

  9. Wang SX, Utaka Y, Tasaki Y. An experimental study on moisture transport through a porous plate with micro pores. Int J Heat Mass Trans. 2009;52:4386–9.

    Article  Google Scholar 

  10. Tambue A, Berre I, Nordbotten JM. Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods. Adv Water Resour. 2013;53:250–62.

    Article  Google Scholar 

  11. Sabir HM, ElHag YBM. A study of capillary-assisted evaporators. Appl Therm Eng. 2007;27:1555–64.

    Article  CAS  Google Scholar 

  12. Shen L, Wang J, Dong W, Pu J, Peng J, Qu D, et al. An experimental investigation on transpiration cooling with phase change under supersonic condition. Appl Therm Eng. 2016;105:549–56.

    Article  CAS  Google Scholar 

  13. Shi JX, Wang JH. A numerical investigation of transpiration cooling with liquid coolant phase change. Transp Porous Med. 2011;87:703–16.

    Article  CAS  Google Scholar 

  14. Wei K, Wang JH, Mao M. Model discussion of transpiration cooling with boiling. Transp Porous Med. 2012;94:303–18.

    Article  CAS  Google Scholar 

  15. Keener D, Lenertz J, Bowersox R, Bowman J. Transpiration cooling effects on nozzle heat transfer and performance. J Spacecr Rockets. 2015;32:981–5.

    Article  Google Scholar 

  16. Hornung RD, Trangenstein JA. Adaptive mesh refinement and multilevel iteration for flow in porous media. J Comput Phys. 1997;136:522–45.

    Article  Google Scholar 

  17. Wang XH, Quintard M, Darche G. Adaptive mesh refinement for one-dimensional three-phase flow with phase change in porous media. Numer Heat Transf B Fund. 2006;50:231–68.

    Article  Google Scholar 

  18. Luo HS, Wang XH, Quintard M. Adaptive mesh refinement for one-dimensional three-phase flows in heterogeneous fractured porous media. Numer Heat Transf B Fund. 2008;54:476–98.

    Article  Google Scholar 

  19. Xin C, Rao Z, You X, Song Z, Han D. Numerical investigation of vapor–liquid heat and mass transfer in porous media. Energy Convers Manag. 2014;78:1–7.

    Article  Google Scholar 

  20. He F, Wang J. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change. Energy Convers Manag. 2014;80:591–7.

    Article  Google Scholar 

  21. He F, Wang J, Xu L, Wang X. Modeling and simulation of transpiration cooling with phase change. Appl Therm Eng. 2013;58:173–80.

    Article  Google Scholar 

  22. van Foreest A, Sippel M, Guelhan A, Esser B, Ambrosius BAC, Sudmeijer K. Transpiration cooling using liquid water. J Thermophys Heat Transf. 2009;23:693–702.

    Article  Google Scholar 

  23. Nima MA. Numerical study of phase change characteristics in a vertical and inclined porous channel using thermal non-equilibrium model. J Porous Media. 2016;19:1099–121.

    Article  Google Scholar 

  24. Bau HH, Torrance KE. Boiling in low-permeability porous materials. Int J Heat Mass Transf. 1982;25:45–55.

    Article  CAS  Google Scholar 

  25. Topin F, Rahli O, Tadrist L, Pantaloni J. Experimental study of convective boiling in a porous medium: temperature field analysis. J Heat Transf. 1996;118:230–3.

    Article  CAS  Google Scholar 

  26. Rahli O, Topin F, Tadrist L, Pantaloni J. Analysis of heat transfer with liquid–vapor phase change in a forced-flow fluid moving through porous media. Int J Heat Mass Transf. 1996;39:3959–75.

    Article  CAS  Google Scholar 

  27. Bear J. Dynamics of fluids in porous media. New York: Elsevier; 1972.

    Google Scholar 

  28. Wang CY, Beckermann C. A 2-phase mixture model of liquid–gas flow and heat-transfer in capillary-porous media. 1. Formulation. Int J Heat Mass Transf. 1993;36:2747–58.

    Article  CAS  Google Scholar 

  29. Bridge L, Bradean R, Ward MJ, Wetton AR. The analysis of a two-phase zone with condensation in a porous medium. J Eng Math. 2003;45:247–68.

    Article  CAS  Google Scholar 

  30. Yuki K, Abei J, Hashizume H, Toda S. Numerical investigation of thermofluid flow characteristics with phase change against high heat flux in porous media. J Heat Transf. 2008;130:012602.

    Article  Google Scholar 

  31. Scheidegger AE. The physics of flow through porous media. 3rd ed. Toronto: University of Toronto Press; 1974.

    Google Scholar 

  32. Wang JH, Shi JX. Discussion of boundary conditions of transpiration cooling problems using analytical solution of LTNE model. J Heat Transf. 2008;130:014504.

    Article  Google Scholar 

  33. Peterson GP, Chang CS. Heat transfer analysis and evaluation for two-phase flow in porous-channel heat sinks. Numer Heat Transf Appl. 1997;31:113–30.

    Article  CAS  Google Scholar 

  34. Landis J, Bowman W. Numerical study of a transpiration cooled rocket nozzle. In: Joint propulsion conference and exhibit; (1996).

Download references

Acknowledgements

The work was supported by the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (No: 2014QNA25), Natural Science Foundation of Jiangsu Province (No: BK20140193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyun Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, C., Lu, L. & Liu, X. Numerical analysis on thermal characteristics of transpiration cooling with coolant phase change. J Therm Anal Calorim 131, 1747–1755 (2018). https://doi.org/10.1007/s10973-017-6562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6562-3

Keywords

Navigation