Skip to main content
Log in

Preparation and properties of ceramifiable flame-retarded silicone rubber composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ceramifiable flame-retardant silicone rubber composites were prepared by silicone rubber (SR) as the base polymer, and ammonium polyphosphate, calcium carbonate, sericite mica, and glass frits were utilized as additives. The flammability and thermal stability properties of ceramifying silicone rubber composites were studied by the limiting oxygen index (LOI), microscale combustion calorimetry (MCC), and thermogravimetric analysis (TG). The ceramic residues formed at various temperatures were studied by mechanical testing, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results indicated that the ceramifying silicone rubber achieved a LOI value of 31.2% and the flexural strength of ceramic residues formed at 1000 °C was 19.7 MPa. Moreover, the MCC results demonstrated that the heat release rate and total release rate of the composites were reduced significantly compared to the corresponding value of neat SR. The TG showed that the residue of composites was approximately 61.5% at 700 °C, as significantly higher than that the residue of neat SR. The XRD results demonstrated that fluoroapatite and Ca2SiO4 crystals were produced in the ceramic residue at high temperatures. The SEM analysis depicted that the number of holes was reduced and a dense structure was formed as the sintering temperature increased, leading to the excellent mechanical properties of formed ceramics at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hamdani S, Longuet C, Perrin D, Lopez-cuesta JM, Ganachaud F. Flame retardancy of silicone-based materials. Polym Degrad Stab. 2009;94:465–95.

    Article  CAS  Google Scholar 

  2. Cao EP, Cui XQ, Wang K, Li YY, Guo WH. Improving properties of ceramic silicone rubber composites using high vinyl silicone oil. J Appl Polym Sci. 2015;132:41864–70.

    Google Scholar 

  3. Zhu C, Deng C, Gao JY, Wang YZ. An efficient flame retardant for silicone rubber: preparation and application. Polym Degrad Stab. 2015;121:42–50.

    Article  CAS  Google Scholar 

  4. Fang SL, Hu Y, Song L, Zhan J, He QL. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci. 2008;43:1057–62.

    Article  CAS  Google Scholar 

  5. Zhuo JL, Dong J, Jiao CM, Chen XL. Synergistic effects between red phosphorus and alumina trihydrate in flame retardant silicone rubber composites. Plast, Rubber Compos. 2013;42:239–43.

    Article  CAS  Google Scholar 

  6. Chen WJ, Zeng XR, Lai XJ, Li HQ, Fang WZ, Liu T. Synergistic effect and mechanism of platinum catalyst and nitrogen-containing silane on the thermal stability of silicone rubber. Thermochim Acta. 2016;632:1–9.

    Article  CAS  Google Scholar 

  7. Delebecq E, Hamdani-Devarennes S, Raeke J, Lopez-Cuesta JM, Ganachaud F. High residue contents indebted by platinum and silica synergistic action during the pyrolysis of silicone formulations. ACS Appl Mater Interfaces. 2011;3:869–80.

    Article  CAS  Google Scholar 

  8. Paul Donald R, Mark James E. Fillers for polysiloxane (“silicone”) elastomers. Prog Polym Sci. 2010;35:893–901.

    Article  CAS  Google Scholar 

  9. Di HW, Deng C, Li RM, Dong LP, Wang YZ. A novel EVA composite with simultaneous flame retardation and ceramifiable capacity. RSC Adv. 2015;5:51248–57.

    Article  CAS  Google Scholar 

  10. Hu S, Chen F, Li JG, Shen Q, Huang ZX, Zhang LM. The ceramifying process and mechanical properties of silicone rubber/ammonium polyphosphate/aluminium hydroxide/mica composites. Polym Degrad Stab. 2016;126:196–203.

    Article  CAS  Google Scholar 

  11. Imiela M, Anyszka R, Bielinski DM, Pędzich Z, Zarzecka-Napierała M, Szumera M. Effect of carbon fibers on thermal properties and mechanical strength of ceramizable composites based on silicone rubber. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-5115-x.

    Google Scholar 

  12. Zhang XP, Guan YY, Xie Y, Qiu D. “House-of-cards” structures in silicone rubber composites for superb anti-collapsing performance at medium high temperature. RSC Adv. 2016;6:7970–6.

    Article  CAS  Google Scholar 

  13. Yang L, Hu Y, Lu HD, Song L. Morphology, thermal, and mechanical properties of flame-retardant silicone rubber/montmorillonite nanocomposites. J Appl Polym Sci. 2006;99:3275–80.

    Article  CAS  Google Scholar 

  14. Al-Hassany Z, Genovese A, Shanks RA. Fire-retardant and fire-barrier poly(vinyl acetate) composites for sealant application. Express Polym Lett. 2010;4:79–93.

    Article  CAS  Google Scholar 

  15. Anyszka R, Bieliński DM, Pędzich Z, Szumera M. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites. J Therm Anal Calorim. 2015;119:111–21.

    Article  CAS  Google Scholar 

  16. Xiong YL, Shen Q, Chen F, Luo GQ. High strength retention and dimensional stability of silicone/alumina composite panel under fire. Fire Mater. 2012;36:254–63.

    Article  CAS  Google Scholar 

  17. Ferg EE, Hlangothi SP, Bambalaza S. An Experimental design approach in formulating a ceramifiable EVA/PDMS composite coating for electric cable insulation. Polym Compos. 2015;. doi:10.1002/pc.23595.

    Google Scholar 

  18. Li YM, Deng C, Wang YZ. A novel high-temperature-resistant polymeric material for cables and insulated wires via the ceramization of mica-based ceramifiable EVA composites. Compos Sci Technol. 2016;132:116–22.

    Article  CAS  Google Scholar 

  19. Qin Y, Rao ZL, Huang ZX, Zhang H. Preparation and performance of ceramizable heat-resistant organic adhesive for joining Al2O3 ceramics. Int J Adhes Adhes. 2014;55:132–8.

    Article  CAS  Google Scholar 

  20. Hanu LG, Simon GP, Cheng YB. Preferential orientation of muscovite in ceramifiable silicone composites. Mater Sci Eng A. 2005;398:180–7.

    Article  Google Scholar 

  21. Hanu LG, Simon GP, Cheng YB. Thermal stability and flammability of silicone polymer composites. Polym Degrad Stab. 2006;91:1373–9.

    Article  CAS  Google Scholar 

  22. Mansouri J, Burford RP, Cheng YB. Pyrolysis behaviour of silicone-based ceramifying composites. Mater Sci Eng A. 2006;425:7–14.

    Article  Google Scholar 

  23. Mansouri J, Wood CA, Roberts K, Cheng YB, Burford RP. Investigation of the ceramifying process of modified silicone–silicate compositions. J Mater Sci. 2007;42:6046–55.

    Article  CAS  Google Scholar 

  24. Guo JH, Zhang Y, Li HJ, Zhang X. Effect of the sintering temperature on the microstructure, properties and formation mechanism of ceramic materials obtained from polysiloxane elastomer-based ceramizable composites. J Alloy Compd. 2016;678:499–505.

    Article  CAS  Google Scholar 

  25. Deodhar S, Shanmuganathan K, Fan QG. Calcium carbonate and ammonium polyphosphate-based flame retardant composition for polypropylene. J Appl Polym Sci. 2011;120:1866–73.

    Article  CAS  Google Scholar 

  26. Nazari S, Shabanian M. Novel heterocyclic semi-aromatic polyamides: synthesis and characterization. Des Monomers Polym. 2014;17:33–9.

    Article  CAS  Google Scholar 

  27. Ding P, Kang B, Zhang J, Yang JW, Song N, Tang SF, Shi LY. Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency. J Colloid Interface Sci. 2015;440:46–52.

    Article  CAS  Google Scholar 

  28. Anyszka R, Bieliński DM, Pędzich Z, Rybiński P, Imiela M, Siciński M, Zarzecka-Napierała M, Gozdek T, Rutkowski P. Thermal stability and flammability of styrene-butadiene rubber-based (SBR) ceramifiable composites. Materials. 2016;9:604–16.

    Article  Google Scholar 

  29. Hu S, Song L, Pan HF, Hu Y. Thermal properties and combustion behaviors of chitosan based flame retardant combining phosphorus and nickel. Ind Eng Chem Res. 2012;51:3663–9.

    Article  CAS  Google Scholar 

  30. Chen XL, Li M, Zhuo JL, Ma CY. Influence of Fe2O3 on smoke suppression and thermal degradation properties in intumescent flame-retardant silicone rubber. J Therm Anal Calorim. 2016;123:439–48.

    Article  CAS  Google Scholar 

  31. Wang JH, Ji CT, Yan YT, Zhao D, Shi LY. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers. Poly Degrad Stab. 2015;121:149–56.

    Article  CAS  Google Scholar 

  32. Wang GJ, Xu W. Influence of caged bicyclic phosphate and CaCO3 nanoparticles on char-forming property of PU rigid foams. Polym Degrad Stab. 2013;98:2323–30.

    Article  CAS  Google Scholar 

  33. Anyszka R, Bieliński DM, Jędrzejczyk M. Thermal behavior of silicone rubber–based ceramizable composites characterized by fourier transform infrared (FT-IR) spectroscopy and microcalorimetry. Appl Spectrosc. 2013;67:1437–40.

    Article  CAS  Google Scholar 

  34. Hamdani S, Longuet C, Lopez-cuesta JM, Ganachaud F. Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices. I. Blend preparation and thermal properties. Polym Degrad Stab. 2010;95:1911–9.

    Article  CAS  Google Scholar 

  35. Landi E, Tampieri A, Celotti G, Sprio S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20:2377–87.

    Article  CAS  Google Scholar 

  36. Loher S, Stark WJ, Maciejewski M, Baiker A, Pratsinis SE, Reichardt D, Maspero F, Krumeich F, Günther D. Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis. Chem Mater. 2005;17:36–42.

    Article  CAS  Google Scholar 

  37. Wei M, Evans JH, Bostrom T, Grøndahl L. Synthesis and characterization of hydroxyapatite, fluoride-substitued hydroxyapatite and fluorapatite. J Mater Sci Mater Med. 2003;14:311–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge ‘Scientific and Technological Achievements Transformation Program of Jiangsu Province (SBA2014010034)’ and ‘Ningbo Industrial Major Projects (201601ZD-A01026)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, F., Yan, W., Guo, W. et al. Preparation and properties of ceramifiable flame-retarded silicone rubber composites. J Therm Anal Calorim 130, 813–821 (2017). https://doi.org/10.1007/s10973-017-6448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6448-4

Keywords

Navigation